The notifiable freshwater pathogen Gyrodactylus salaris Malmberg, 1957 tends to be a generalist in contrast to other monogeneans. Whilst it causes most damage to its primary host, the Atlantic salmon (Salmo salar Linnaeus), transport and reservoir hosts likely play a key role in maintaining the parasite in the environment. Here, we tested the ability of G. salaris (strain River Lierelva, southern Norway) to infect and reproduce on a population of wild caught alpine bullhead (Cottus poecilopus Heckel). Exposure of alpine bullhead yearlings (0+) to G. salaris for 24 h at low (6.5 °C) or high temperature (11.5 °C) resulted in the establishment of 1 to 104 parasites per fish. Eight to nine days post-infection at high temperature, the infection of G. salaris was eliminated, indicative of innate host immunity. In contrast, at low temperature G. salaris infections persisted for 47-48 days. The relative lengthy infection of alpine bullhead with G. salaris compared to other non-salmonids tested may be due to low temperature and high initial infection load in combination with an epibiont infection. The present results suggest that this non-salmonid may function as a temperature-dependent transport or reservoir host for G. salaris.
The life cycle of marine Eubothrium sp. (Cestoda: Pseudophyllidea), from Atlantic salmon (Salmo salar L.) was experimentally completed in one year and included only one intermediate host (Acartia tonsa Dana) (Copepoda: Calanoida). Adult cestodes were collected from farmed salmon, and ripe eggs released by the cestodes were fed to Acartia tonsa. Ingested eggs hatched in the gut and the larvae developed in the haemocoel of the copepod for 15 days at 16°C. A total of 170 seawater-reared salmon were exposed to infected copepods and the total prevalence of Eubothrium sp. in the salmon after infection was 95.3%, with a mean intensity of 15.0 (range 1-87). The infected salmon were kept in the laboratory where the growth of the cestodes was studied for eleven months. Mean length of the cestodes increased with time, but a large variation among the cestodes was observed. Growth and maturation of the cestodes were dependent on host size and the number of worms present in the intestine. No evidence of mortality of Eubothrium sp. was observed during the experimental period.
The swimbladder parasite Anguillicola crassus Kuwahara, Niimi et Itagaki, 1974 (Nematoda: Dracunculoidea) is a well-known pathogenic parasite of the Japanese and European eels. Numerous studies on the life cycle of the parasite have revealed the involvement of a copepod or an ostracod intermediate host and a fish paratenic host, in which the third-stage larvae (Lj) infective to the eel develop. The present study comprised infection experiments with the larvae of A. crassus. These experiments can be divided into three groups: (1) experimental reproduction of the parasite's life cycle via copepod intermediate hosts and fish paratenic hosts, (2) infection of another potential paratenic host with third-stage larvae of A. crassus collected from a paratenic host; (3) study of the ability of larvae damaged by paratenic hosts to infect the final host, the eel. Infection experiments have revealed that larvae which are still viable but have become encapsulated as a result of the host reaction mounted against them by cyprinid paratenic hosts (bleak, Alhumus alhumus) have lost their ability to infect the final host, the eel. At the same time, experimental infection of the eel with larvae derived from other paratenic fish hosts (river goby, Neogobius fluviati-lis: ruffe, Gymnocephalus cemua) showing no or only weak host reaction proved to be successful.