We consider the weighted space $W_1^{(2)}(\mathbb R,q)$ of Sobolev type $$ W_1^{(2)}(\mathbb R,q)=\left \{y\in A_{\rm loc}^{(1)}(\mathbb R)\colon \|y''\|_{L_1(\mathbb R)}+\|qy\|_{L_1(\mathbb R)}<\infty \right \} $$ and the equation $$ - y''(x)+q(x)y(x)=f(x),\quad x\in \mathbb R. \leqno (1) $$ Here $f\in L_1(\mathbb R)$ and $0\le q\in L_1^{\rm loc}(\mathbb R).$ \endgraf We prove the following: \item {1)} The problems of embedding $W_1^{(2)}(\mathbb R,q)\hookrightarrow L_1(\mathbb R)$ and of correct solvability of (1) in $L_1(\mathbb R) $ are equivalent; \item {2)} an embedding $W_1^{(2)}(\mathbb R,q)\hookrightarrow L_1(\mathbb R) $ exists if and only if $$\exists a>0\colon \inf _{x\in \mathbb R}\int _{x-a}^{x+a} q(t) {\rm d} t>0.$$.
We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum.
We present new sharp embedding theorems for mixed-norm analytic spaces in pseudoconvex domains with smooth boundary. New related sharp results in minimal bounded homogeneous domains in higher dimension are also provided. Last domains we consider are domains which are direct generalizations of the well-studied so-called bounded symmetric domains in Cn. Our results were known before only in the very particular case of domains of such type in the unit ball. As in the unit ball case, all our proofs are heavily based on nice properties of the r-lattice. Some results of this paper can be also obtained in some unbounded domains, namely tubular domains over symmetric cones., Romi F. Shamoyan, Olivera R. Mihić., and Obsahuje seznam literatury