Cieľom state je navrhnúť systematickú a vyčerpávajúcu klasifikáciu definícií. Táto klasifikácia vychádza z typológie, ktorú vypracoval Richard Robinson vo svojej knihe o definíciách, no v rôznych aspektoch ju ďalej dopracováva. Nová klasifikácia je založená na dvoch kritériách, a to kritériu predmetnosti a kritériu ilokučnej sily. Podľa kritéria predmetnosti možno definovať výrazy, pojmy, resp. objekty (v širokom zmysle); podľa kritéria ilokučnej sily možno zase rozlíšiť definície, ktoré opisujú existujúci systém, a definície, ktoré transformujú daný systém na nový systém. Napokon sa podľa týchto dvoch kritérií vyhodnocujú niektoré známe druhy definícií., The aim of the paper is proposing a classification of definitions that would be both systematic and exhaustive. The classification is built on the one developed by Richard Robinson in his book on definitions; Robinson’s classification is, however, further elaborated here in certain respects. The new classification is based on two criteria, namely the criterion of aboutness and the criterion of illocutionary force. According to the former, one may define either expressions or concepts or objects (broadly conceived); according to the latter, one may distinguish the definitions describing an existing system and the definitions transforming a system into a new one. Finally, certain well-known kinds of definitions are assessed with respect to the two criteria., and Marián Zouhar.
We present new sharp embedding theorems for mixed-norm analytic spaces in pseudoconvex domains with smooth boundary. New related sharp results in minimal bounded homogeneous domains in higher dimension are also provided. Last domains we consider are domains which are direct generalizations of the well-studied so-called bounded symmetric domains in Cn. Our results were known before only in the very particular case of domains of such type in the unit ball. As in the unit ball case, all our proofs are heavily based on nice properties of the r-lattice. Some results of this paper can be also obtained in some unbounded domains, namely tubular domains over symmetric cones., Romi F. Shamoyan, Olivera R. Mihić., and Obsahuje seznam literatury