The structure of the human microsporidium found by Yachnis and colleagues in two AIDS patients (Am. J. Clin. Pathol. 106: 535-43, 1996) (hereafter referred to as HMY) was investigated by light and transmission electron microscopy and compared with Thelohania apodemi Doby, Jeannes et Raoult, 1963, a microsporidian of small rodents. The fine structure of the HMY was found to be similar to that of Trachipleistophora hominis Hollister, Canning, Weidner, Field, Kench et Marriott, 1996. Characteristic is the presence of a thick layer of electron dense material on the outer lace of the meront plasmalemma, which is maintained during the whole life cycle and which later persists as an electron dense coat on the sporophorous vesicle (SPOV). However, HMY is distinguished from T. hominis during sporogony, as two types of SPOV and spores are formed in HMY. One type of SPOV contains thick-wallcd spores (usually 8 or more in number) with anisofilar polar filaments of 7 + 2 pattem, while the other type contains only two thin-walled spores with a smaller number (3-5) of isofilar polar filament coils. The HMY differs from T. apodemi which also forms SPOV with 8 spores inside, but the spores of which are larger in size and have 9 + 2 polar filament pattern.
French bean (Phaseolus vulgaris L.) cotyledons lost most of their reserve substances during several early days of germination and turned green. In cotyledon mesophyll cells of one-week-old seedlings, plastids were represented predominantly by amyloplasts (starch grains) and chloroamyloplasts, and the cells appeared to be metabolically highly active. Cell heterogeneity associated with distance of the cells from cotyledon vascular bundles was evident. Only mesophyll cells near to the bundles were rich in plastids. In two-weeks-old intact bean plants, the cotyledons were yellow and shrunken, and their cells were nearly "empty". The plastids in them were represented by senescent plastids (gerontoplasts) only. In the gerontoplasts as well as freely in cytosol, fluorescent lipoid inclusions were accumulated. This cotyledon development was more or less independent of irradiance. In "decapitated" bean plants, senescence of mesophyll cells and plastids was slowed down considerably, and the life span of the cotyledons was prolonged. and J. Kutík, N. Wilhelmová, J. Snopek.
Photosynthetic pigment contents of the second sexual generation of a cybrid plant (C-18-1) resulting from Solanum nigrum genome and Solanum tuberosum plastome were compared to those of the original (S. nigrum). Chloroplast ultrastructure alterations among S. tuberosum, cybrid, and S. nigrum were also studied. Leaf segments of both the cybrid and S. nigrum plants were cultured on shoot induction medium [B5 supplemented with 0.56 g m-3 benzylaminopurine (BAP)] for one week in light, to induce adventitious bud formation. These leaf segments were then placed in darkness for 5 weeks to form a white shoot. The respective cybrid plant had the same phenotype of the fusion recipient plant (S. nigrum) and was fertile. The rate of photosynthetic pigment biosynthesis in the white cybrid shoots was lower than that of the original plant shoots after subjecting the two plants to the same conditions of different irradiation periods (0, 2, 4, 6, 8, and 10 d). At the 10-d irradiation period of two white shoot plants, the total pigment content of S. nigrum shoot increased approximately 3-fold over that of the cybrid shoot. Numbers of grana and thylakoids as well as chloroplast size were decreased in cybrid cells in comparison to those in S. tuberosum cells. Under atrazine stress, while the chloroplast ultrastructure of the cybrid cells (atrazine sensitive) was strongly influenced, the chloroplasts of S. nigrum (atrazine resistant) were not affected. and K. A. Fayez, A. M. Hassanein.
Drought stress is one of the main environmental factors limiting plant growth and productivity of many crops. Elevated carbon dioxide concentration (eCO2) can ameliorate, mitigate, or compensate for the negative impact of drought on plant growth and enable plants to remain turgid and functional for a longer period. In order to investigate the combined effects of eCO2 and drought stress on photosynthetic performance and leaf structures, we analyzed photosynthetic characteristics and structure and ultrastructure of cucumber leaves. The decline in net photosynthetic rate under moderate drought stress occurred due to stomatal limitation alone, while under severe drought stress, it was the result of stomatal and nonstomatal limitations. Conversely, eCO2 improved photosynthetic performance under moderate drought stress, increased the lengths of the palisade cells and the number of chloroplasts per palisade cell under severe drought stress, and significantly increased the grana thickness under moderate drought stress. Additionally, eCO2 significantly decreased stomatal density, stomatal widths and stomatal aperture on the abaxial surface of leaves under moderate drought stress. In conclusion, eCO2 can alleviate the negative effects of drought stress by improving the drought resistance of cucumber seedlings through stomatal modifications and leaf structure., B. B. Liu, M. Li, Q. M. Li, Q. Q. Cui, W. D. Zhang, X. Z. Ai, H. G. Bi., and Obsahuje bibliografii
This study of the proteins in the silk of the summer and winter cocoons of the horse chestnut leaf miner Cameraria ohridella revealed they can inhibit protease activity. The inhibitory activity of the summer silk was higher against both the fungal proteinase K and bacterial subtilisin than that of the winter silk. Also, the winter silk was more effective in inhibiting proteinase K than subtilisin. Further, it was demonstrated that some of the silk proteins are glycosylated probably by mannose carbohydrates. An electron microscopy study of the cocoons revealed the presence of silk fibres with different diameters in some pupal chambers. and Veronika Hněvsová, Dalibor Kodrík, František Weyda.
A morphological type of Sarcocystis cysts found in one of two examined great black-backed gull, Larus marinus (Linnaeus) (Laridae), is considered to represent a new species for which the name Sarcocystis lari sp. n. is proposed and its description is provided. The cysts are ribbon-shaped, very long (the largest fragment found was 6 mm long) and relatively narrow (up to 75 μm). Under a light microscope the cyst wall reaches up to 1 μm and seems to be smooth. Using a computerized image analysis system, knolls, which resemble protrusions on the wall surface, are visible. Lancet-shaped cystozoites measure in average 6.9 × 1.4 μm (range 6.3-7.9 μm × 1.2-1.5 μm) in length. Observed using Transmission electron microscopy (TEM), the cyst wall is wavy and measures up to 1.2 μm in thickness. The parasitophorous vacuolar membrane has regularly arranged small invaginations. Cyst content is divided into large chambers by septa. Sarcocystis lari sp. n. has type-1 tissue cyst wall and is morphologically indistinguishable from other bird Sarcocystis species characterized by the same type of the wall. On the basis of 18S rRNA gene, 28S rRNA gene and ITS-1 region sequences, S. lari is a genetically distinct species, being most closely related to avian Sarcocystis species whose definitive hosts are predatory birds.
Účinná detekce elektronů ve všech typech elektronových mikroskopů je základním předpokladem pro získávání kvalitní informace o povaze zkoumaného vzorku a dosažení vyššího rozlišení detailů na povrchu vzorku. Tento přehledový článek shrnuje výsledky, které byly dosaženy v oblasti detekce signálních elektronů, zejména sekundárních a zpětně odražených elektronů, v rastrovacích elektronových mikroskopech. Podává charakteristiku obrazu tvořeného sekundárními a zpětně odraženými elektrony a soustřeďuje se především na scintilačně-fotonásobičové systémy. Uvádí přehled detekčních metod používaných v mikroskopech střední a vyšší třídy a v mikroskopech s nízkou energií primárního elektronového svazku při jejich dopadu na vzorek., Rudolf Autrata, Bohumila Lencová, Vilém Neděla., and Obsahuje seznam literatury
Článek představuje elektronovou mikroskopii jako vhodný zdroj inspirace při výuce fyziky na střední škole. Na konkrétních příkladech vysvětluje základní fyzikální principy těchto (složitých) přístrojů. V současnosti se elektronová mikroskopie rychle rozvíjí a její zařazení do učebnic fyziky je dle autorů článku velmi žádoucí., This article presents electron microscopy as a suitable source of inspiration for teaching physics at secondary school. We use examples to explain the basic physical principles of these sophisticated devices. Today, electron microscopy is developing rapidly, and its inclusion in physics textbooks is highly desirable., and Petr Vencelides, Jana Jurmanová.