In this study, susceptibility of inbred C57BL/6 and outbred NMRI mice to monosodium glutamate (MSG) obesity or diet-induced obesity (DIO) was compared in terms of food intake, body weight, adiposity as well as leptin, insulin and glucose levels. MSG obesity is an early-onset obesity resulting from MSG-induced lesions in arcuate nucleus to neonatal mice. Both male and female C57BL/6 and NMRI mice with MSG obesity did not differ in body weight from their lean controls, but had dramatically increased fat to body weight ratio. All MSG obese mice developed severe hyperleptinemia, more remarkable in females, but only NMRI male mice showed massive hyperinsulinemia and an extremely high HOMA index that pointed to development of insulin resistance. Diet-induced obesity is a late-onset obesity; it developed during 16-week-long feeding with high-fat diet containing 60 % calories as fat. Inbred C57BL/6 mice, which are frequently used in DIO studies, both male and female, had significantly increased fat to body weight ratio and leptin and glucose levels compared with their appropriate lean controls, but only female C57BL/6 mice had also significantly elevated body weight and insulin level. NMRI mice were less prone to DIO than C57BL/6 ones and did not show significant changes in metabolic parameters after feeding with high-fat diet., R. Matyšková, L. Maletínská, J. Maixnerová, Z. Pirník, A. Kiss, B. Železná., and Obsahuje bibliografii a bibliografické odkazy
The objective of the present experiment was to assess the involvement of small intestine in expression of susceptibility or resistance to the high-fat/high-energy diet. The investigation was carried out in adult male Sprague-Dawley rats fed either standard laboratory diet (3.2 kcal/g, 9.5 % fat) or high-fat (HF) diet (4.04 kcal/g, 30 % fat) for 4 weeks as well as in HF rats that were retrospectively designated on the bases of their higher or lower weight gain as sensitive (DIO) or resistant (DR) to obesity. Our results revealed in HF group significant increase in energy intake, food efficiency, weight gain and Lee´s index of obesity. Moreover, in comparison with controls, a significantly increased duodenal and jejunal alkaline phosphatase (AP) and α-glucosidase activity as well as hypertrophy of jejunal mucosa (increased protein/DNA ratio) were observed in HF fed rats. In contrast, intestinal function was inversely related to energy intake or to the development of adiposity in DIO vs. DR rats. The DR rats had significantly greater AP and α-glucosidase activity and more pronounced suppression of energy intake than obese DIO rats. It indicates that the increase of enzyme activities and the lowered effectiveness of nutrient absorption might be a significant factor preventing the expression of obesity proneness. This information contributes to a better understanding of a complex interaction between HF diet feeding and small intestinal adaptability, which determines the energy homeostasis and predict the ability to resist or develop obesity in these phenotypes., Z. Šefčíková, T. Hájek, Ľ. Lenhardt, Ľ. Raček, Š. Možeš., and Obsahuje bibliografii a bibliografické odkazy
We investigated the impact of a high-fat (HF) diet during pre- and post-weaning periods on the intestinal microbiota and alkaline phosphatase (AP) activity in male rats. Nutrition from birth was influenced by feeding rat dams with either a standard or HF diet. After weaning male pups nursed by control dams continued on a standard diet (CC) or HF diet (C-HF), while offspring nursed by HF dams continued on HF diet (HF) or standard diet (HF-C). The numbers of Bacteroides/Prevotella (BAC) and Lactobacillus/Enterococcus (LAB) in the gut were determined by FISH technique. HF pups displayed enhanced adiposity and increased AP activity (19 %), as well as higher LAB (P<0.001) and lower numbers of BAC (P<0.001) in the jejunum and colon than controls. In HF-C rats, post-weaning lower fat intake resulted in decreased fat deposition accompanied by reduced AP activity (20 %) compared to HF rats. Composition of the intestinal microbiota in these rats was not influenced. In contrast, in comparison with controls, C-HF rats displayed higher LAB (P<0.001) and lower BAC (P<0.001) together with increased adiposity and AP activity (14 %). These results indicate that consumption of diet with different fat content could modulate gut microbial/functional conditions depending on the period when the nutritional manipulation occurs., Z. Šefčíková, D. Bujňáková., and Obsahuje bibliografii
The aim of our study was to develop a model producing obese mice in early adulthood (4-6 weeks) based on their over-nutrition during fetal and early postnatal development. The fertilized dams of the parental generation were fed the standard diet supplemented with high-energy nutritional product Ensure Plus during gestation and lactation. De livered weanlings were then fed with standard or supplemented diet and assessed for body fat deposits using EchoMRI at the ti me of early and late adulthood. Maternal over-feeding during th e period before weaning had the most significant effect on obesity development in the filial generation. In weanlings, signific antly higher body fat deposits and average body weight were recorded. Later, further significant increase in percentage of body fat in both male and female mice was observed. Withdrawal of the Ensure Plus supplement caused a decrease in the percentage of body fat in part of the filial generation. In offspring fed the standard diet, higher fat deposits persisted till the time of late adulthood. We conclude that this diet-induced obesity model might be used in exploration of the effects of elevated body fat on physiological functions of various organ systems during juvenile and early adulthood periods of life of a human being., J. Kubandová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy