In the present work neonatal male and female Wistar rats were treated intraperitoneally with monosodium glutamate (MSG 2 mg/kg b.w.) or saline (controls) daily for 4 day after birth. At the age of 30 and 80 days, the alkaline phosphatase activity (AP) in the brush border of individual enterocytes, the body fat content and Lee´s index of obesity were analyzed. Microdensitometrical quantification of AP was significantly increased on day 30 in males (P<0.01) and on day 80 in MSG-treated male and female rats (P<0.001) as compared to the controls. MSG administration also increased the body fat weight and the obesity index significantly (P<0.001) in 80-day-old animals, but was without any significant effect on their food intake. Our results showed that a) neonatal MSG-treatment may significantly change the intestinal function and b) the investigation of the intestinal enzyme activities may be important in further studies on MSG-induced and other forms of obesity., Š. Mozeš, Ľ. Lenhardt, A. Martinková., and Obsahuje bibliografii
The objective of the present experiment was to assess the involvement of small intestine in expression of susceptibility or resistance to the high-fat/high-energy diet. The investigation was carried out in adult male Sprague-Dawley rats fed either standard laboratory diet (3.2 kcal/g, 9.5 % fat) or high-fat (HF) diet (4.04 kcal/g, 30 % fat) for 4 weeks as well as in HF rats that were retrospectively designated on the bases of their higher or lower weight gain as sensitive (DIO) or resistant (DR) to obesity. Our results revealed in HF group significant increase in energy intake, food efficiency, weight gain and Lee´s index of obesity. Moreover, in comparison with controls, a significantly increased duodenal and jejunal alkaline phosphatase (AP) and α-glucosidase activity as well as hypertrophy of jejunal mucosa (increased protein/DNA ratio) were observed in HF fed rats. In contrast, intestinal function was inversely related to energy intake or to the development of adiposity in DIO vs. DR rats. The DR rats had significantly greater AP and α-glucosidase activity and more pronounced suppression of energy intake than obese DIO rats. It indicates that the increase of enzyme activities and the lowered effectiveness of nutrient absorption might be a significant factor preventing the expression of obesity proneness. This information contributes to a better understanding of a complex interaction between HF diet feeding and small intestinal adaptability, which determines the energy homeostasis and predict the ability to resist or develop obesity in these phenotypes., Z. Šefčíková, T. Hájek, Ľ. Lenhardt, Ľ. Raček, Š. Možeš., and Obsahuje bibliografii a bibliografické odkazy
a1_In the present work the effects of fasting and refeeding on fat pad weight and alkaline phosphatase activity in the brush border of individual duodenal enterocytes have been evaluated in male Wistar rats with obesity induced by monosodium glutamate (MSG) treatment during the early postnatal period. Neonatal rats were treated subcutaneously with MSG (2 mg/g b.w.) or saline (controls) for 4 days after birth. At 4 months of age, two types of experiments were performed. In the first experiment rats, were submitted to 3 or 6 days lasting food deprivation. In the second experiment the rats were refed for 3 or 6 days ad libitum or restrictedly (60 % of pre-fasting intake) after a 6 day-fasting period. Fasting and refeeding influenced the body fat and function of the duodenum in MSG-treated rats differently as compared to the controls. However, alkaline phosphatase activity and the weight of epididymal and retroperitoneal fat depots were significantly increased in MSG obese rats (P<0.001) during all the periods examined. While 3 days of food deprivation resulted in both groups in a similar loss of adipose tissue weight and alkaline phosphatase activity, the decrements of these parameters after 6 days of fasting were lower in obese rats suggesting that their capacity to spare body fat stores was enhanced. After 3 days of ad libitum refeeding, a more marked adaptational increase of food consumption and also a significantly increased alkaline phosphatase activity above the pre-fasting level (P<0.01) was observed in the MSG-treated rats. Consequently, a more rapid body fat restoration was demonstrated in these animals. Refeeding of rats at 60 % of the pre-fasting intake level resulted in a significant increase of alkaline phosphatase activity in both the MSG and control group; moreover, as food restriction continued, MSG-treated rats tended to further increase the enzyme activity., a2_Our results revealed that MSG treatment of neonatal rats may significantly change the intestinal functions. Permanently increased alkaline phosphatase activity observed in MSG obese rats during all investigated periods suggests that this functional alteration is probably not a consequence of actual nutritional variation but could be a component of regulatory mechanisms maintaining their obesity at critical values., Ľ. Raček, Ľ. Lenhardt, Š. Mozeš., and Obsahuje bibliografii
a1_The day-night variation of food intake and alkaline phosphatase (AP) activity was studied in the duodenum of rats neonatally treated with monosodium glutamate (MSG) and saline-treated (control) rats. The animals were kept under light-dark conditions (light phase from 09:00 h to 21:00 h) with free access to food. AP activity was cytophotometrically analyzed in the brush-border of enterocytes separated from the tip, middle and cryptal part of the villi every 6 h over a 24-hour period. In comparison with the controls, MSG-treated rats consumed about 40 % less food during the dark period and their 24-hour food intake was thus significantly lowered (P<0.001). On the other hand, the nocturnal feeding habit showed a similar pattern: food consumption was high during the night (65 % vs. 75 %) and the lowest consumption was found during the light phase (35 % vs. 25 %) in MSG-treated and control rats, respectively. In agreement with the rhythm of food intake, the highest AP activity was observed during the dark phase and was lowest during the light phase in both groups of animals. These significant day-night variations showed nearly the same pattern in the enterocytes of all observed parts along the villus axis. In comparison with the controls, a permanent increase of AP activity was observed in neonatal MSG-treated rats. This increase was more expressive during the dark phase of the day in the cryptal (P<0.001) and middle part of the villus (P<0.01). From the viewpoint of feeding, this enzyme in MSG-treated rats was enhanced in an inverse relation to the amount of food eaten i.e. despite sustained hypophagia the mean AP activity in the enterocytes along the villus axis was higher than in the control animals during all investigated periods., a2_The present results suggest that the increased AP activity in MSG-treated rats is probably not a consequence of actual day-night eating perturbations but could be a component of a more general effect of MSG. This information contributes to better understanding of the function of intestinal AP and its relation to day-night feeding changes especially in connection with the MSG syndrome., A. Martinková, Ľ. Lenhardt, Š. Mozeš., and Obsahuje bibliografii
To investigate the relationship between early nutritional experience, ontogeny of the small intestinal functions and predisposition to obesity development, the following experimental models of male Sprague-Dawley rats were used: 1) rats in which the quantity of nutrition was manipulated from birth to weaning (day 30) by adjusting the number of pups in the nest to 4 (SL), 10 (NL) and 16 pups (LL) and 2) littermates of SL, NL and LL rats fed either a standard or a hypercaloric diet from days 80 to 135 of age. The overfed SL pups were overweight after day 15 and became permanently obese, whereas the underfed smaller LL pups, due to accelerated growth and enhanced food intake from day 30 to day 35, attained a body fat level that did not differ from normally fed NL rats. Moreover, a significantly increased duodenal and jejunal alkaline phosphatase (AP) activity was found in SL and LL rats and these acquired somatic and intestinal characteristics persisted from weaning throughout life. Eight weeks of high-energy diet feeding elicited a similar pattern of intestinal response in SL and LL rats that was clearly different from NL rats. Despite energy overconsumption in these three groups, both SL and LL rats still displayed enhanced AP activity and showed a significant increase in protein/DNA ratio accompanied with a significant body fat accretion. These results indicate that the postnatally acquired small intestinal changes induced by over- and undernutrition could be involved in the similar predisposition to obesity risk in later life when caloric density of the diet is raised., Š. Možeš, Z. Šefčíková, Ľ. Lenhardt., and Obsahuje bibliografii a bibliografické odkazy