Species-level problems in the Aphis (Bursaphis) complex are reconsidered based on the partial sequences of the mitochondrial cox1 gene together with morphological and ecological data. This indicates that the American species A. oenotherae is a complex of four species (A. oenotherae, A. holoenotherae, A. costalis and A. neomexicana) and the taxonomic status of the species couples A. varians - A. manitobensis and A. epilobii - A. grossulariae require further clarification. Aphis sp. (USA: California, Oregon) of Blackman & Eastop (2006, p. 415) deserves the status of a species provided there is information on its host association and life cycle. Partial cox1 sequences might be misleading when used as standard DNA barcodes of aphid species of the subgenus Bursaphis. and Rimantas Rakauskas, Jurga Turčinavičienė, Jekaterina Bašilova.
Phylogenetic relationships among Palaearctic Ribes and/or Onagraceae inhabiting Aphis species from five countries were examined using mitochondrial gene cytochrome oxidase I (CO-I) and nuclear gene elongation factor 1 α (EF-1α) sequences. There was no major conflict between the trees obtained from two data sets; nodes with strong bootstrap support from one analysis never contradicted those strongly supported by the other analysis. Palaearctic species of the subgenus Bursaphis (= "grossulariae" species group of the genus Aphis) form a monophyletic group within the genus Aphis. All these analyses indicated that Aphis grossulariae and A. schneideri are close relatives, which is supported by the information on experimental and probably also natural hybridisation. Our data indicate the independent colonisation of Ribes spp. by two species groups of the genus Aphis: A. triglochinis (subgenus Aphis s. str.), and A. grossulariae and A. schneideri (subgenus Bursaphis). Once the subgenus Bursaphis (and other subgenera) is accepted, the subgenus Aphis s. str. will require further subdivision.
The phylogenetic relationships in the myrmicine ant genus Myrmecina were analyzed using 1,281 bp of the mitochondrial cytochrome c oxidase I gene. Intermorphic queens observed in M. graminicola (Europe), M. nipponica (Japan), M. americana (North America; reported for the first time) and M. sp. A (Java) were reconstructed as an ancestral trait in this genus. Molecular-clock-based age estimates suggest that queen polymorphism evolved in Myrmecina at the latest during the Miocene. In terms of biogeographical regions, the inferred chronological order of divergence is: (oriental, (nearctic, (western palearctic, eastern palearctic))).
Relationships of nine Italian Chrysotoxum species were analysed using morphological and molecular data. The morphology-derived cladogram revealed three well-defined groups: (i) C. cautum, (ii) the arcuatum group (C. arcuatum, C. fasciolatum) and (iii) the festivum group (C. festivum - C. vernale, C. bicinctum, C. elegans, C. octomaculatum and C. parmense). Trees inferred from COI-tRNALeu-COII sequences were largely in agreement, but they identified (i) C. parmense as an isolated branch, (ii) C. festivum and C. vernale as separate entities, (iii) C. elegans within a paraphyletic C. festivum clade. ITS2 trees were partially unresolved but C. parmense sequence emerged as a sister to the festivum group. The monophyly of the festivum group derived from morphological data was rejected by a phylogenetic test performed on combined molecular data set. The diagnostic value of some morphological characters commonly used to identify Chrysotoxum species is therefore questioned.
Dolichopodidae (over 6000 described species in more than 200 genera) is one of the most speciose families of Diptera. Males of many dolichopodid species, including Dolichopus, feature conspicuous ornaments (Male Secondary Sexual Characters) that are used during courtship. Next to these MSSCs, every identification key to Dolichopus primarily uses colour characters (postocular bristles; femora) of unknown phylogenetic relevance. The phylogeny of Dolichopodidae has rarely been investigated, especially at the species level, and molecular data were hardly ever involved. We inferred phylogenetic relationships among 45 species (57 samples) of the subfamily Dolichopodinae on the basis of 32 morphological and 1415 nucleotide characters (810 for COI, 605 for Cyt-b). The monophyly of Dolichopus and Gymnopternus as well as the separate systematic position of Ethiromyia chalybea were supported in all analyses, confirming recent findings by other authors based purely on morphology. Within Dolichopus, stable species groups could be assigned to four distinct categories on the basis of their statistical support in 7 phylogenetic analyses: (i) clades significantly supported in all analyses, (ii) clades supported in trees based on DNA and combined data, but only partly in morphological trees, (iii) clades significantly supported in trees based on DNA and combined data, but not in morphological trees, and (iv) clades consistently supported only in morphological trees. The phylogeny generated here provides a better understanding of the phylogenetic relevance of some debated morphological characters used for species and species-group characterizations in the most commonly used identification keys. In this respect, postocular bristle colour proved of little phylogenetic relevance since every group with species featuring black bristles also included species with partly yellow bristles. Entirely or partly infuscated femora explained the nodes of three stable species groups and even revealed an incorrect polarity of this morphological character in three species. Four of 6 complex MSSCs and 5 of 8 more common MSSCs were found consistently in further species groups.
The phylogenetic relationships of the three major species groups of Tribolium (Coleoptera: Tenebrionidae) were inferred using the simultaneous analysis of 642 bp of the most conserved part of mitochondrial DNA (mt DNA) cytochrome oxidase I (COI) and 448-452 bp of mt 16S rDNA. High sequence divergence was observed for both genes even among sibling species. The analysis of the combined segments of COI and 16S rDNA sequences produced a phylogenetic tree with moderate level of confidence. The tree topology showed monophyly of the genus Tribolium whose species were separated into three groups: "brevicornis" group (with T. brevicornis as the only representative), "castaneum" group (with T. castaneum, T. freemani, T. madens and T. audax) and "confusum" group (with T. confusum, T. anaphe and T. destructor). Sibling species pairs T. castaneum - T. freemani and T. madens - T. audax are clearly resolved. The preliminary results presented here give moderate support to the previously proposed phylogeny based on morphological data.
Partial (600 bp) sequences of mitochondrial cytochrome oxidase I (COI) gene were used to infer the phylogeography of Melitaea cinxia (Lepidoptera: Nymphalidae) across the entire distributional range of the species, encompassing north Africa and Eurasia. Cladistic analysis of 49 distinct haplotypes (haplotype and nucleotide diversity were 0.95 and 0.027, respectively) revealed strong phylogeographic structure in M. cinxia, characterised by four major clades: Morocco; Western (Iberia, France, Italy); Central (central and northern Western Europe, Balkans, Greece, Anatolia, Levant); and Eastern (eastern Baltic, Urals, Iran, Siberia, China); separated by average pairwise distances of beween 2 and 6 percent. This pattern is consistent with the location of southern glacial refugia in the Iberian, Italian and Balkan peninsulas, as well as multiple eastern refugia. The Western clade is further structured into south-central Iberian, northern Iberian (and French) and southern Italian sub-clades; and the Eastern clade into Near Eastern and Far Eastern sub-clades; with weaker phylogeographical concordance within the Central clade, except for a large area in central and northern Western Europe which is monomorphic for COI haplotype. The Baltic and eastern Europe have been primarily colonized by the Far Eastern sub-clade, rather than the Central (Balkan) clade, highlighting the importance of including Near and Far Eastern populations in phylogeographic studies of Palearctic species. Maps showing the extent of clades and sub-clades suggest several regions of secondary contact and possible hybridization. Interspecific comparison of representative M. cinxia haplotypes supports a monophyletic origin of all M. cinxia.