We report the karyotype characteristics including chromosome numbers of Saga campbelli campbelli, S. c. gracilis, and S. rammei using the following classical cytogenetic methods: C-banding, silver staining, and fluorochrome staining DAPI and CMA3. We also present FISH data showing the distribution of telomeric repeats and 18S rDNA on the chromosomes of these species and the results of similar studies cited in the literature on S. hellenica, S. natoliae, and S. rhodiensis. The five European Saga species exhibit a high rate of karyotype evolution. In addition to changes in chromosome number and morphology (by chromosomal inversion and/or chromosome fusion), interspecific autosomal differentiation involved changes in the distribution and quantity of constitutive heterochromatin and GC-rich regions, as well as the number and location of NORs. In the present study we focused on testing a hypothetical model of karyotype evolution in Saga, with particular reference to the cytogenetic mapping of rDNA and telomeric sequences. Variation in the distribution of rDNA and location of Ag-NORs are novel phylogenetic markers for the genus Saga.
The present paper reports some cytogenetic peculiarities observed in the Ag-NORs of Pamphagus ortolaniae chromosomes, the unusual behaviour of ribosomal sites after silver staining and the intense Ag-positive reaction of centromeric regions at spermatogonial metaphase and spermatocyte metaphase I and II. Moreover, a conclusive identification and localization of all the ribosomal clusters is provided by using heterologous rDNA FISH on spermatocyte chromosomes. 18S-28S rDNA mapped on a single chromosome pair and resulted multiclustered along the chromosomal body in three distinct serial regions, r1, r2 and r3. Surprisingly, these areas were scarcely (r1) or never (r2 and r3) detectable by silver impregnation. As in other Orthoptera and many groups of arthropods, FISH with the pentamer (TTAGG)n as the probe labelled the telomeres of all chromosomes.
Four European taxa of the Tortula muralis complex (T. lingulata, T. muralis var. aestiva, T. muralis var. muralis, T. obtusifolia) were evaluated using multivariate analysis of morphological characters, a cultivation experiment and cytological screening (flow cytometry, chromosome counts). This study revealed that only T. lingulata is morphologically well defined within the complex and several new sporophytic characters that can be used to distinguish this taxon from the superficially most similar T. obtusifolia. The traditionally recognized taxa T. muralis var. muralis, T. muralis var. aestiva and T. obtusifolia showed continuous variation, with frequent intermediate plants. However, the main character of the gametophyte used for determination (costa excurrency) proved to be stable in cultivation, indicating that this character is under genetic control. Additionally, rather complex and only partly species-specific patterns of ploidy variation were found within the complex. Tortula lingulata and T. obtusifolia appear to be cytologically homogeneous; plants of T. lingulata were found to be diploid, whereas plants tentatively named as T. obtusifolia were haploid. In contrast, both haploid and diploid cytotypes were found in both varieties of T. muralis, with a marked predominance of diploids in var. aestiva and less marked predominance of diploids in var. muralis. Current varietal level of the evaluated infraspecific taxa of T. muralis was thus found to be warranted. It is suggested that plants previously recognized as T. obtusifolia should be treated as a subspecies of T. muralis.