1_The adult demographic parameters, mobility, nectar choice and how the spatial distribution of males and females of Z. polyxena is affected by the distribution and abundance of host-plants, and adults of the opposite sex was studied in a population of this species inhabiting a dense network of permanent habitats (totalling 8.7 ha). The population size was estimated to be ca. 300 individuals. The average adult lifespan was 4.4 days and the maximum 23 (male) and 20 (female) days. The capture probability was higher for males than females due to the more conspicuous behaviour and bounded area of activity of males. A slow increase was followed by a slow decrease in the sex specific parabolic recruitment curve, indicating slight protandry and long emergence period, probably due to habitat heterogeneity. The spatial distribution of host plants (Aristolochia lutea) is the key factor determining the spatial distribution of adults. There was a strong positive correlation between male and female density at each patch, both of which were dependent on the cover of host plants growing in sunny conditions. In searching for A. lutea plants suitable for oviposition, females fly greater distances and move more frequently between patches than males. The size, shape and orientation of the male home range were influenced by the size, shape and orientation of stands of host-plants in sunny positions, but not by patch area. Such adult fidelity to stands of host-plants in sunny positions indicates that the spatial distributions of oviposition sites, mate-locating sites and larval habitats of Z. polyxena overlap. The better statistical fit and much lower probabilities for long-distance movements generated by a negative exponential function than an inverse power function are probably due to the small size and high habitat connectivity of the site studied. Adults were opportunistic in their use of nectar plants., 2_Traditional management is the key factor for maintaining permanent habitats for this species in a grassland biotope., Tatjana Čelik., and Obsahuje seznam literatury
The Marsh fritillary (Euphydryas aurinia) (Lepidoptera: Nymphalidae) has declined across Europe, including the Czech Republic. Current conservation strategies rely on prevention of habitat loss and degradation, and increase in habitat quality and connectivity via promoting traditional grassland management. The population structure and adult demography parameters of a single population was investigated for eight years (single system), and of all the known Czech populations (multiple populations) for a single year, using mark-recapture. There was substantial variation in the patterns of adult demography, both among years in the single system and among the multiple populations in a single year. In the single system, the date of the first flight of an adult varied by 18 days over the 8 years and total annual numbers varied with a coefficient of variation of 0.40 (females fluctuating more than males). The average density was ca 80 adults/ha. The population size displayed density-dependence, i.e. decreased following years with high adult numbers, with an equilibrium density of 90 individuals/ha. The average density of the multiple populations was ca 120 individuals/ha. The estimated total population for the Czech Republic was 25,000 individuals (17,000 males / 8,000 females) in 2007, which does not indicate an imminent threat of extinction. The regional persistence of E. aurinia is likely to depend on re-colonisation of temporarily vacant sites by dispersing individuals, facilitated by local shifts in adult flight phenology to that better adapted to local conditions. and Kamil Zimmermann, Pavla Blazkova, Oldrich Cizek, Zdenek Fric, Vladimir Hula, Pavel Kepka, David Novotny, Irena Slamova, Martin Konvicka.
Habitats of pre-hibernating gregarious larvae of the endangered Marsh Fritillary butterfly (Euphydryas aurinia) were studied in field in Western Bohemia, Czech Republic. The species inhabits moist seminatural meadows managed by light grazing and haymaking; the only local host plant is Succisa pratensis. The redundancy analyses of the vegetation composition (around 166 nest-bearing and 381 unoccupied host plants) showed that nest presence was positively associated with short cushion-forming grasses (esp. Nardus stricta). It was negatively associated with competitively superior tall grasses (e.g., Deschampsia caespitosa) and tall herbs. Comparison of Ellenberg's indicator values of vegetation in occupied vs. unoccupied plots revealed that the nests were more often found in drier, nitrogen-poorer and more acidic conditions than unoccupied plants. Multiple regressions of nest presence against architecture of the host plants (170 occupied, 1280 unoccupied) revealed that the nests were associated with densely clumped host plants, low to medium height of sward and mechanical disturbance. The patterns agree with our knowledge of the biology of the larvae: short sward (related to low nitrogen, humidity, and low pH) facilitates larval basking; high host density reduces the likelihood of starvation. Sod disturbance facilitates host plant germination. The conditions favourable for the nests were also favourable for the host plant, but the plants grew in broader range of conditions than that occupied by the nests. The abandoning of a site results into a situation when the conditions first become intolerable for the butterfly, and ultimately for the plant. Since grazing and mowing have a different impact on vegetation composition and architecture, we propose that the studied populations have persisted in a semi-dynamic state in the two modes of management. Conservation management should mimic the dynamics of traditional land use on the smaller scales of extant colonies.