Winter weather limits populations of resident bird species. Although many small-scale or speciesspecific studies illustrated this fact, our knowledge of interspecific differences in population responses to winter temperatures is incomplete due to lack of community-level studies. For this purpose, we have used long-term monitoring data on breeding bird populations of 37 common bird species wintering in the Czech Republic. We predicted that species will differ in their relationship between winter temperature and abundance with respect to their body mass and dietary niche. Smaller species having relatively higher energy expenditure should show closer relationship between breeding abundance and winter temperature than larger species. Concerning dietary niche, abundance of species feeding on animals should be more affected by temperature than abundance of species feeding on plants or omnivorous species. Our results confirmed the second prediction: populations of species preying on animals followed winter temperatures more closely than populations of species feeding on both animals and plants. Food-mediated mortality is probably more important than direct effects of low temperatures. In general, relationships between abundance and temperature were relatively weak in most species and we suggest that possible changes in winter temperatures may not seriously affect populations of common breeding birds in the Czech Republic.
Helminths often occupy defined niches in the gut of their definitive hosts. In the dioecious acanthocephalans, adult males and females usually have similar gut distributions, but sexual site segregation has been reported in at least some species. We studied the intestinal distribution of the acanthocephalan Echinorhynchus borealis von Linstow, 1901 (syn. of E. cinctulus Porta, 1905) in its definitive host, burbot (Lota lota Linnaeus). Over 80% of female worms were found in the pyloric caeca, whereas the majority of males were in the anterior two-thirds of the intestine. This difference was relatively consistent between individual fish hosts. Worms from different parts of the gut did not differ in length, so site segregation was not obviously related to worm growth or age. We found proportionally more males in the caeca when a larger fraction of the females were found there, suggesting mating opportunities influence gut distribution. However, this result relied on a single parasite infrapopulation and is thus tentative. We discuss how mating strategies and/or sexual differences in life history might explain why males and females occupy different parts of the burbot gut., Arto Tuomainen, E. Tellervo Valtonen, Daniel P. Benesh., and Obsahuje bibliografii
While the study of colour patterns is a traditional subject of evolutionary ecology, there are various hypotheses which suffer from a lack of experimental evidence. One intriguing possibility is a trade-off between warning efficiency and detectability. After a certain size threshold, the detrimental effect of increased detectability can outweigh the benefits of warning colouration. One may thus expect corresponding patterns at the level of ontogenetic development: as juveniles grow, they should first acquire warning colouration, and then lose it again. We analysed this possibility in Orgyia antiqua, a moth species with hairy larvae which are polyphenic with respect to the intensity of warning colouration. We detected a regular change in colour patterns through larval life. Indeed, the larvae tend to display warning colouration at intermediate sizes while dull colours dominate in fully grown larvae. In aviary experiments, we confirmed that the colourful phenotype is the one that causes the strongest aversion in birds. Nevertheless, the effect was rather weak and most of the larvae were still eventually consumed when found. Unexpectedly, for human subjects, the warningly coloured larvae were harder, and not easier to find among natural vegetation, most likely due to the disruptive effect of the aposematic colour pattern. Importantly, the trend was reversed in the largest size class, suggesting that the disruptive colouration loses its advantage as the larva grows. This is consistent with the actual patterns of size-dependence of colouration. We present evidence against an alternative explanation which relates size-related change in colouration to behavioural changes prior to pupation. We conclude that even if the efficiency of the warning effect plays a role in determining the size-dependence of colouration, the pattern may be largely explained by the effects of size-dependent detectability alone.
In diapause-destined larval cultures of the blow fly, Cailiphora vicina, competition through severe overcrowding forces down body size and causes the smaller individuals to escape from the diapause \"programme\" to form miniature puparia. Among the diapausing cohort, smaller larvae contain a similar proportion of fat to larger larvae, and a similar rate of fat metabolism over the first 7 weeks in diapause. However, these smaller diapausing larvae are much less cold tolerant than larger individuals. Of the miniature larvae that side-step the diapause programme to form puparia, even the smallest of them are capable of development to the adult, and these small-sized adults are capable of depositing \"full-sized\" eggs (although fewer of them) which hatch to produce \"full-sized\" and viable larvae. These data suggest that the smallest individuals, by avoiding the diapause programme, may gain a selective advantage by completing another autumnal generation instead of entering diapause and failing to survive because of a reduced cold tolerance.
The acanthocephalan Echinorhynchus bothniensis Zdzitowiecki and Valtonen, 1987 differs from most other species in the genus Echinorhynchus Zoega in Müller, 1776 by infecting mysids (order Mysida) instead of amphipods (order Amphipoda) as intermediate hosts. Here we report on the occurrence of E. bothniensis in mysids (Mysis segerstralei Audzijonytė et Väinölä) and in its fish definitive hosts in a high Arctic lake. Out of 15 907 sampled mysids, 4.8% were infected with a mean intensity of 1.05 worms (range 1-5), although there was notable variation between samples taken in different years and sites. Larger mysids appear more likely to be infected. Of five fish species sampled, charr,Salvelinus alpinus (Linnaeus), and a benthic-feeding whitefish morph, Coregonus lavaretus (Linnaeus), were the most heavily infected (mean abundances of 80 and 15, respectively). The adult parasite population in fish exhibited a female-biased sex ratio (1.78 : 1). Although E. bothniensis is rather unique in infecting mysids, many aspects of its natural history mirror that of other acanthocephalan species., Raija-Liisa Aura, Daniel P. Benesh, Risto Palomäki, E. Tellervo Valtonen., and Obsahuje bibliografii
Survival under dry conditions was examined in males and females of Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae), a beetle of tropical origin. The range of individual responses and the effect of gender on water loss were also evaluated. Females exhibit significantly longer survival (Lt50 and Lt90) than males under desiccating conditions. Larger females beetles have a greater initial water mass and hence can tolerate greater water losses. Such beetles have longer survival under dry conditions. Males and females loose an average of 54.8 and 58.9% of their body water prior to death. The insects were inactive most of the time, when kept under dry conditions; the rate of decrease in body water was thus reduced. Beetles of both gender display a negative correlation between the rates of water loss under desiccating conditions and the duration of survival. We conclude that the difference in survival period between males and females is due to a combination of greater female tolerance to desiccation and larger body size.