Toxoplasma gondii (Nicolle et Manceaux, 1908) is an obligate intracellular apicomplexan parasite and can infect warmblooded animals and humans all over the world. Development of effective vaccines is considered the only ideal way to control infection with T. gondii. However, only one live vaccine is commercially available for use in sheep and goats. Thus more effective antigenic proteins are searched for. In the present study we report a novel protein by secreted T. gondii termed Myc regulation 1 (MYR1). The physical and chemical characteristics, epitopes, hydrophilicity and functional sites of MYR1 were analysed by multiple bioinformatic approaches. The 3D models of MYR1 proteins were constructed and analysed. Furthermore, liner B-cell epitopes and T-cell epitopes of MYR1 protein and SAG1 were predicted. Compared to SAG1, MYR1 with good B-cell epitopes and T-cell epitopes had a potentiality to become a more successful vaccine against T. gondii. The bioinformatics analysis of MYR1 proteins could laid the foundation for further studies of its biological function experimentally and provide valuable information necessary for a better prevention and treatment of toxoplasmosis., Jian Zhou, Gang Lu, Shenyi He., and Obsahuje bibliografii
Současná biologie se bouřlivě rozvíjí v oblasti genomiky. Tyto přístupy pronikají stále více do ekologie i evoluční biologie. Vznikl nový obor populační genomika, který propojuje terénní a laboratorní biologii. Využívá nové metodiky sekvenování a bioinformatických analýz, které v tomto článku stručně popisujeme a vysvětlujeme., Genomics is a rapidly developing field of modern biology. Novel genomic approaches are increasingly utilized in ecology and evolutionary biology. Population genomics has been recently established as a new discipline, connecting field and laboratory biology. It uses new sequencing methods as well as bioinformatic analyses, briefly described and explained in this article., and Helena Štorchová.
The role of the antioxidant defense system in salt tolerance of Aeluropus littoralis has not been yet reported; therefore in the present study, the changes of catalase (CAT) activity in this halophyte plant was investigated and CAT gene was isolated. The leaves of treated and control plants were harvested at various times, starting 1 day prior to initiating treatment, then periodically at 72-h intervals for 21 days. The data collected showed that CAT activity increased significantly with time in plants treated with 200, 400, and 600 mM NaCl when compared with the control plants. Maximum enzyme activity was observed between the 6th and 12th day at all NaCl concentrations. CAT gene was isolated and cloned via pTZ57R/T cloning vector in Escherichia coli. CAT gene encoded 494 amino acids and had also high homology of 90, 87, 86, and 86% with CAT genes from Zea mays, Oryza sativa, Triticum aestivum, and Hordeum vulgare, respectively. and M. Modarresi, G. A. Nematzadeh, F. Moradian.