An invasive sawfly Aproceros leucopoda Takeuchi, 1939, which originates from East Asia, has colonized elms (Ulmus spp.) in Austria, Hungary, Poland, Romania, Slovakia and the Ukraine, at least since 2003. In Europe, the larvae can completely defoliate native and non-native elm trees and may cause at least partial dieback. Field observations indicate that elms are infested independent of their age and site characteristics. The life cycle of A. leucopoda is described based on material reared in Hokkaido, Japan. Parthenogenetic reproduction, short life cycle of summer generations and the ability to produce four generations per year result in the production of numerous progeny. The evolution of a seasonal dimorphism in head morphology, a simple cocoon that is attached directly to the host plant and a short period spent in the cocoon stage during summer, are putative apomorphies shared by Aproceros Takeuchi, 1939 and Aprosthema Konow, 1899. These traits reduce developmental costs and contribute to the proliferation of A. leucopoda. No specialized parasitoid, that can effectively reduce outbreaks of this species, is known. It is likely that this pest will spread into central and south-western Europe. Further monitoring of A. leucopoda is required to assess future range extensions in Europe, its exacerbating effect on Dutch elm disease and to find a suitable biocontrol agent. Concise keys to imaginal and larval stages are presented that will facilitate the identification of A. leucopoda.
The effects of NaCl stress on the growth and photosynthetic characters of Ulmus pumila L. seedlings were investigated under sand culture condition. With increasing NaCl concentration, main stem height, branch number, leaf number, and leaf area declined, while Na+ content and the Na+/K+ ratio in both expanded and expanding leaves increased. Na+ content was significantly higher in expanded leaves than in those just expanding. Chlorophyll (Chl) a and Chl b contents declined as NaCl concentration increased. The net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate also declined, but stomatal limitation value increased as NaCl concentration increased. Both the maximal quantum yield of PSII photochemistry and the effective quantum yield of PSII photochemistry declined as NaCl concentration rose. These results suggest that the accumulation of Na+ in already expanded leaves might reduce damage to the expanding leaves and help U. pumila endure high salinity. The reduced photosynthesis in response to salt stress was mainly caused by stomatal limitation., Z. T. Feng, Y. Q. Deng, H. Fan, Q. J. Sun, N. Sui, B. S. Wang., and Obsahuje bibliografii
Changes of chlorophyll (Chl) a fluorescence and photosynthetic pigment contents were analysed in galled leaves (visibly damaged and undamaged parts) and intact leaves. The values of minimal fluorescence of the dark-adapted state, maximal quantum yield of PSII photochemistry, effective quantum yield of PSII photochemical conversion, and photochemical quenching coefficient decreased in Ulmus pumila L. leaves galled by Tetraneura ulmi (L.) and in U. glabra Huds. galled by Eriosoma ulmi (L.). Colopha compressa (Koch.) feeding affected these parameters only in damaged parts of U. laevis Pall. galled leaves. The increasing number of T. ulmi galls progressively decreased photosynthetic performance. In gall tissues of all analysed aphid species, the lowest photosynthetic pigment content was found, indicating that the photosynthetic capacity must have been low in galls. Significant reduction of Chl and carotenoid contents were observed in damaged and undamaged portions of galled leaves only in the case of T. ulmi feeding., K. Kmieć, K. Rubinowska, W. Michałek, H. Sytykiewicz., and Obsahuje bibliografii