Anorexia nervosa is a model of simple starvation accompanied by secondary hyperlipoproteinemia. The pattern of plasma fatty acids influences the levels of plasma lipids and lipoproteins. The concentration of plasma lathosterol is a surrogate marker of cholesterol synthesis de novo, concentrations of campesterol and beta-sitosterol reflect resorption of exogenous cholesterol. The aim of the study was to evaluate fatty acids in plasma lipid classes and their relationship to plasma lipids, lipoproteins, cholesterol precursors and plant sterols. We examined 16 women with anorexia nervosa and 25 healthy ones. Patients with anorexia nervosa revealed increased concentrations of total cholesterol, triglycerides, HDL-cholesterol, campesterol and beta-sitosterol. Moreover, a decreased content of n-6 polyunsaturated fatty acids was found in all lipid classes. These changes were compensated by an increased content of monounsaturated fatty acids in cholesteryl esters, saturated fatty acids in triglycerides and both monounsaturated and saturated fatty acids in phosphatidylcholine. The most consistent finding in the fatty acid pattern concerned a decreased content of linoleic acid and a raised content of palmitoleic acid in all lipid classes. The changes of plasma lipids and lipoproteins in anorexia nervosa are the result of complex mechanisms including decreased catabolism of triglyceride-rich lipoproteins, normal rate of cholesterol synthesis and increased resorption of exogenous cholesterol.
Deuterium-depleted water (DDW) has a lower concentration of deuterium
than occurs naturally (less than 145 ppm). While effects of DDW on cancer started to be intensively studied, the effects on cardiovascular system are completely unknown. Thus, we aimed to analyze the effects
of DDW (55±5 ppm) administration to 12-week-old normotensive Wistar
-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) treated with 15 % fructose for 6 weeks. Blood pressure (BP) and selected
biochemical parameters were measured together with determination of nitric oxide synthase (NOS) activity and iNOS and eNOS protein expressions in the left ventricle (LV) and aorta. Neither DDW nor fructose had any significant effect on BP in both strains. DDW treatment decreased total cholesterol and triglyceride levels in WKY, but it was not able to prevent increase in the same parameters elevated due to fructose treatment in SHR. Both fructose and DDW increased insulin level in WKY. Fructose did not affect NOS activity either in WKY or SHR. DDW increased NOS activity in LV of both WKY and SHR, while it
decreased NOS activity and iNOS expression in the aorta of SHR with or without fructose treatment. In conclusion, DDW treatment significantly modified biochemica l parameters in WKY together with NOS activity elevation in the heart. On the other hand, it did not affect biochemical parameters in SHR, but decreased NOS activity elevated due to iNOS upregulation in the aorta.