Deuterium-depleted water (DDW) has a lower concentration of deuterium
than occurs naturally (less than 145 ppm). While effects of DDW on cancer started to be intensively studied, the effects on cardiovascular system are completely unknown. Thus, we aimed to analyze the effects
of DDW (55±5 ppm) administration to 12-week-old normotensive Wistar
-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) treated with 15 % fructose for 6 weeks. Blood pressure (BP) and selected
biochemical parameters were measured together with determination of nitric oxide synthase (NOS) activity and iNOS and eNOS protein expressions in the left ventricle (LV) and aorta. Neither DDW nor fructose had any significant effect on BP in both strains. DDW treatment decreased total cholesterol and triglyceride levels in WKY, but it was not able to prevent increase in the same parameters elevated due to fructose treatment in SHR. Both fructose and DDW increased insulin level in WKY. Fructose did not affect NOS activity either in WKY or SHR. DDW increased NOS activity in LV of both WKY and SHR, while it
decreased NOS activity and iNOS expression in the aorta of SHR with or without fructose treatment. In conclusion, DDW treatment significantly modified biochemica l parameters in WKY together with NOS activity elevation in the heart. On the other hand, it did not affect biochemical parameters in SHR, but decreased NOS activity elevated due to iNOS upregulation in the aorta.
We examined the effect of leptin on the insulin resistance in skeletal muscles by measuring glucose transport. Male Wistar rats were fed rat chow or high-fat diets for 30 days. Before sacrifice, rats fed high-fat diet were subcutaneously injected with leptin (1 mg/kg b.w.) for 3 days. The glucose transport in epitrochlearis and soleus muscles did not differ in the experimental groups under basal conditions, however these values decreased significantly in the rats fed high-fat diet under insulin stimulation (p<0.01). Leptin treatment recovered the decreased glucose transport in epitrochlearis (p<0.05) and soleus muscles (p=0.08). Triglyceride concentrations in soleus muscles were increased significantly in the rats fed high-fat diet as compared to rats fed chow diet (p<0.01), and were decreased significantly by leptin treatment (p<0.01). The glucose transport was measured under basal conditions and after 60 μU/ml of insulin treatment with or without 50 ng/ml of leptin. Leptin had no direct stimulatory effect on glucose transport under both basal and insulin-stimulated conditions in vitro. These results demonstrate that leptin injection to rats fed high-fat diet recovered impaired insulin responsiveness of skeletal muscles and muscle triglyceride concentrations. However, there was no direct stimulatory effect of leptin on insulin sensitivity of skeletal muscles in vitro.
In addition to a number of deleterious effects on cellular integrity and functions, diabetic metabolic milieu has been implicated in a rapidly growing number of alterations in signal transduction. In this review we focus on Akt kinase physiology, its alterations in diabetes mellitus (DM), and on the emerging role of this signaling system in the
pathophysiology of diabetic microvascular complications. Studies focusing on Akt in diabetes suggest both decrease and increase of Akt activity in DM. Alterations of Akt activity have been found in various tissues and cells in diabetes depending on experimental and clinical contexts. There is convincing evidence suggesting defective Akt signaling in
the development of insulin resistance. Similar defects, as in insulin-sensitive tissues, have been reported in endothelia of DM Type 2 models, possibly contributing to the development of endothelial dysfunction under these conditions. In contrast, Akt activity is increased in some tissues and vascular beds affected by complications in DM Type 1. Identification of the role of this phenomenon in DM-induced growth and hemodynamic alterations in affected vascular beds remains one of the major challenges for future research in this area. Future studies should include the evaluation of therapeutical benefits of pharmacological modulators of Akt activity.
To address the question whether an increase in insulinemia and/or glycemia affects the total activity of lipoprotein lipase (LPL) in circulation, the enzyme activity was measured after periods of hyperinsulinemia (HI), hyperglycemia (HG), and combined hyperinsulinemia and hyperglycemia (HIHG) induced by euglycemic hyperglycemic clamp, hyperglycemic clamp with the infusion of somatostatin to inhibit endogenous insulin secretion, and hyperglycemic clamp, respectively. The results obtained were compared to those after saline infusion (C). Twelve healthy normolipidemic and non-obese men with normal glucose tolerance were included in the study. At the end of each clamp study, LPL activity was determined first in vivo using an intravenous fat tolerance test and then in vitro in postheparin plasma. Whereas isolated HI had no effect on LPL activity in postheparin plasma, both HG and HIHG reduced LPL activity to 60 % and 56 % of that observed after saline infusion. Similarly, the k2 rate constant determined in intravenous fat tolerance test was reduced to 95 %, 84 %, and 54 % after periods of HI, HG, and HIHG, respectively. The activity of hepatic lipase, another lipase involved in lipoprotein metabolism, was not affected by hyperinsulinemia and/or hyperglycemia. In conclusion, our data suggest that hyperglycemia per se can downregulate the total LPL activity in circulation.
The inotropic effects of insulin in the rat heart are still incompletely understood. In this study, the effects of insulin on cardiac contraction were studied in right ventricular papillary muscles from both control rats and rats with chronic diabetes (lasting 16 weeks). Diabetes was induced by the application of streptozotocin (STZ) and the development of diabetes was documented by increased levels of blood glucose, by reduction in body weight and by decreased plasma concentrations of insulin. The contraction was significantly smaller in diabetic rats. Insulin (80 IU/l) reduced the contraction force in both control and diabetic groups. The post-rest potentiation of contraction was not influenced by insulin in control rats, but insulin increased it in diabetic rats. The negative inotropic effect of insulin was preserved in the presence of cyclopiazonic acid (3 μmol/l), a blocker of sarcoplasmic reticulum (SR) Ca2+ pump, in both control and diabetic groups. In contrast, the negative inotropic effect of insulin was completely prevented in the presence of nifedipine (3 μmol/l), a blocker of L-type Ca2+ current. We conclude that insulin exerts a significant negative inotropic effect in rat myocardium, both control and diabetic. This effect is probably related to processes of SR Ca2+ release triggering, whereas SR Ca2+ loading is not involved.
The aimof this study was to compare the levels of nesfatin-1 in healthy subjects with those in prediabetic and diabetic patients who have different glucose tolerance levels. Overall, 100 subjects were divided into
5 groups healthy control (C), impaired fasting glycemia (IFG), impaired glucose tolerance (IGT), metabolic syndrome (MS) an type 2 diabetes mellitus, (Type2 DM).Glycated hemoglobin (HbA1c) assessed the glycemic
control. Homeostasis modelassessment of insulin resistance (HOMA
-IR) was determined using computer analyses. Nesfatin-1 levels were
measured using ELISA method. IFG and IGT (prediabetic groups)from MS and Type 2 DM (diabetic groups) differed significantly in HOMA-IR. The nesfatin-1 levels were lower, although not statistically significant, in IFG
(0.937±0.03 ng/ml, p=0.07) andIGT (1.039±0.06 ng/ml, p=0.5) groups compared to healthysubjects (1.094±0.07 ng/ml). However, the nesfatin-1 levelswere lower in patients with Type 2 DM (0.867±0.02 ng/ml, p=0.007) and MS (0.885±0.01ng/ml, p=0.01) compared to healthy subjects. Nesfatin-1 levels were significantly lower in diabetic patients compared to healthy
subjects. This studysupports the role of insulin resistance in decreased nesfatin-1 levels in patients with Type 2 DM and MS.