A large web corpus (over 10 billion tokens) licensed under CreativeCommons license family in 50+ languages that has been extracted from CommonCrawl, the largest publicly available general Web crawl to date with about 2 billion crawled URLs.
The package contains Czech recordings of the Visual History Archive which consists of the interviews with the Holocaust survivors. The archive consists of audio recordings, four types of automatic transcripts, manual annotations of selected topics and interviews' metadata. The archive totally contains 353 recordings and 592 hours of interviews.
Phonological neighborhood density is known to influence lexical access, speech production as well as perception processes. Lexical competition is thought to be the central concept from which the neighborhood effect emanates: highly competitive neighborhoods are characterized by large degrees of phonemic co-activation, which can delay speech recognition and facilitate speech production. The present study investigates phonetic learning in English as a foreign language in relation to phonological neighborhood density and onset density to see whether dense or sparse neighborhoods are more conducive to the incorporation of novel phonetic detail. In addition, the effect of voice-contrasted minimal pairs (bat-pat) is explored. Results indicate that sparser neighborhoods with weaker lexical competition provide the most optimal phonological environment for phonetic learning. Moreover, novel phonetic details are incorporated faster in neighborhoods without minimal pairs. Results indicate that lexical competition plays a role in the dissemination of phonetic updates in the lexicon of foreign language learners.
The data set includes training, development and test data from the shared tasks on pronoun-focused machine translation and cross-lingual pronoun prediction from the EMNLP 2015 workshop on Discourse in Machine Translation (DiscoMT2015). The release also contains the submissions to the pronoun-focused machine translation along with the manual annotations used for the official evaluation as well as gold-standard annotations of pronoun coreference for the shared task test set.
"Large Scale Colloquial Persian Dataset" (LSCP) is hierarchically organized in asemantic taxonomy that focuses on multi-task informal Persian language understanding as a comprehensive problem. LSCP includes 120M sentences from 27M casual Persian tweets with its dependency relations in syntactic annotation, Part-of-speech tags, sentiment polarity and automatic translation of original Persian sentences in five different languages (EN, CS, DE, IT, HI).
Mapping table for the article Hajič et al., 2024: Mapping Czech Verbal Valency to PropBank Argument Labels, in LREC-COLING 2024, as preprocess by the algorithm described in the paper. This dataset i smeant for verification (replicatoin) purposes only. It will b manually processed further to arrive at a workable CzezchpropBank, to be used in Czech UMR annotation, to be further updated during the annotation. The resulting PropBank frame files fir Czech are expected to be available with some future releases of UMR, containing Czech UMR annotation, or separately.
ParCorFull is a parallel corpus annotated with full coreference chains that has been created to address an important problem that machine translation and other multilingual natural language processing (NLP) technologies face -- translation of coreference across languages. Our corpus contains parallel texts for the language pair English-German, two major European languages. Despite being typologically very close, these languages still have systemic differences in the realisation of coreference, and thus pose problems for multilingual coreference resolution and machine translation. Our parallel corpus covers the genres of planned speech (public lectures) and newswire. It is richly annotated for coreference in both languages, including annotation of both nominal coreference and reference to antecedents expressed as clauses, sentences and verb phrases. This resource supports research in the areas of natural language processing, contrastive linguistics and translation studies on the mechanisms involved in coreference translation in order to develop a better understanding of the phenomenon.