Collection of telephone databases from mediterranean region, incl. (variants of) Arabic. 500-1000 speakers per database, all orthographically transcribed. Speaker information regarding gender, age and accent. Phonetic lexicons included.
This multilingual resource contains corpora in which verbal MWEs have been manually annotated. VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do). This is the first release of the corpora without an associated shared task. Previous version (1.2) was associated with the PARSEME Shared Task on semi-supervised Identification of Verbal MWEs (2020). The data covers 26 languages corresponding to the combination of the corpora for all previous three editions (1.0, 1.1 and 1.2) of the corpora. VMWEs were annotated according to the universal guidelines. The corpora are provided in the cupt format, inspired by the CONLL-U format. Morphological and syntactic information, including parts of speech, lemmas, morphological features and/or syntactic dependencies, are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe). All corpora are split into training, development and test data, following the splitting strategy adopted for the PARSEME Shared Task 1.2. The annotation guidelines are available online: https://parsemefr.lis-lab.fr/parseme-st-guidelines/1.3 The .cupt format is detailed here: https://multiword.sourceforge.net/cupt-format/
Wikipedia plain text data obtained from Wikipedia dumps with WikiExtractor in February 2018.
The data come from all Wikipedias for which dumps could be downloaded at [https://dumps.wikimedia.org/]. This amounts to 297 Wikipedias, usually corresponding to individual languages and identified by their ISO codes. Several special Wikipedias are included, most notably "simple" (Simple English Wikipedia) and "incubator" (tiny hatching Wikipedias in various languages).
For a list of all the Wikipedias, see [https://meta.wikimedia.org/wiki/List_of_Wikipedias].
The script which can be used to get new version of the data is included, but note that Wikipedia limits the download speed for downloading a lot of the dumps, so it takes a few days to download all of them (but one or a few can be downloaded fast).
Also, the format of the dumps changes time to time, so the script will probably eventually stop working one day.
The WikiExtractor tool [http://medialab.di.unipi.it/wiki/Wikipedia_Extractor] used to extract text from the Wikipedia dumps is not mine, I only modified it slightly to produce plaintext outputs [https://github.com/ptakopysk/wikiextractor].
The PADT project might be summarized as an open-ended activity of the Center for Computational Linguistics, the Institute of Formal and Applied Linguistics, and the Institute of Comparative Linguistics, Charles University in Prague, resting in multi-level annotation of Arabic language resources in the light of the theory of Functional Generative Description (Sgall et al., 1986; Hajičová and Sgall, 2003).
An XML-based file containing Arabic Stop-words respecting nouns syntax; particle nouns, signal nouns, separated pronouns and connected nouns
Citation: Driss Namly, Yasser Regragui, Karim Bouzoubaa. "Interoperable Arabic language resources building and exploitation in SAFAR platform". 13th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA) November 29th to December 2nd, 2016.
Pretrained model weights for the UDify model, and extracted BERT weights in pytorch-transformers format. Note that these weights slightly differ from those used in the paper.