Remote ischemic preconditioning (RIP)-induced protection of myocardial energetics was well documented on the level of tissue, but data concerning the involvement of mitochondria were missing. We aimed at the identification of changes in membrane properties and respiratory functions induced in rat heart mitochondria by RIP. Experiments were performed on 46 male Wistar rats divided into control and RIP-treated groups of 21 animals each. Blood flow in the occluded area was recorded by MRI angiography in four animals. RIP protocol comprised of three successive 5-min occlusions each followed by 5-min reperfusions of descending branches of the right hind limb femoral artery. The efficacy of RIP was evaluated as the extent of RIP-induced protection against damage to the functions of mitochondria isolated by differential centrifugation after 30-min global ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Assessments: mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ9 and CoQ10 with HPLC, mitochondrial respiration with the Oxygraph-2k (Oroboros). Results revealed that RIP was affecting the mitochondria. The immediate protection conferred by RIP involves beneficial and prognostically significant effects: a total elimination of ischemia/reperfusion-induced depression of mitochondrial membrane fluidity and a trend for better preservation of mitochondrial state 3 respiration., M. Ferko, I. Kancirová, M. Jašová, S. Čarnická, M. Muráriková, I. Waczulíková, Z. Sumbalová, J. Kucharská, O. uličná, T. Ravingerová, A. Ziegelhöffer., and Obsahuje bibliografii
Our previous preliminary results pointed to possible seasonal variations in Mg2+-ATPase activity of rat heart mitochondria (MIT). It is not too surprising since seasonal differences were already reported in myocardial function, metabolism and ultrastructure of the intact as well as hemodynamically overloaded rabbit hearts and also in other tissues. The present study is aimed to elucidate whether seasonal differences observed in rat heart MIT Mg2+-ATPase activity will be accompanied with changes in membrane fluidity and in the content of conjugated dienes (CD) in the lipid bilayers of MIT membranes as well as whether the above seasonal differences will also be present in the diabetic heart. Our results revealed that values of Mg2+-ATPase activity in the winter/spring-period (W/S-P) exceeded significantly (p<0.05-0.001) those in the summer/autumn-period (S/A-P). Similar trend was also observed in hearts of animals with acute (8 days) streptozotocin diabetes. With the exception of values of CD in the S/A-P, all values of Mg2+-ATPase activities, membrane fluidity and CD concentrations in diabetic hearts exceeded those observed in the healthy hearts. Our results indicate that seasonal differences may play a decisive role in the evaluation of properties and function of rat heart MIT., J. Mujkošová, M. Ferko, P. Humeník, I. Waczulíková, A. Ziegelhöffer., and Obsahuje bibliografii a bibliografické odkazy
Pharmacological preconditioning by diazoxide and a model of experimental streptozotocin-induced acute diabetes mellitus (STZ-DM) provided similar levels of cardioprotection assessed as limiting myocardial infarct size. The aim was to explore the possibility of existence of another in vitro mechanism, which could be contributory to cardioprotection mediated by diazoxide treatment. Mitochondrial membrane fluidity and ATP synthase activity in isolated heart mitochondria were determined under the influence of two factors, STZ-DM condition and treatment with diazoxide. Both factors independently increased the ATP synthase activity (p<0.05), as no interaction effect was observed upon the combination of STZ-DM with diazoxide. On the other hand, the mitochondrial membrane fluidity was significantly increased by STZ-DM only; no significant main effect for diazoxide was found. Based on the results from measurements of enzyme kinetics, we assume a direct interaction of diazoxide with the molecule of ATP synthase stimulated its activity by noncompetitive activation. Our present work revealed, for the first time, that cardioprotection induced by diazoxide may not be caused exclusively by mitochondrial KATP opening, but presumably also by a direct interaction of diazoxide with ATP synthase, although the mechanisms for achieving this activation cannot be fully delineated., M. Jašová, I. Kancirová, M. Muráriková, V. Farkašová, I. Waczulíková, T. Ravingerová, A. Ziegelhöffer, M. Ferko., and Obsahuje bibliografii