Transportation of people and goods represents a still more significant
component of the human culture. Its influence is extremely high today and will increase greatly in the future.
Almost all the contemporary transportation systems are based on the necessity of interaction between the transportation tool (vehicle, plane, ship), the transport control system and the human subject. Though a large effort is put into the development of automatic transport systems, none of the present attempts is fully automatic, in all of them the human subject plays a non-neglectable role with considerably high impact on the reliability and safety of the transportation function. Among such functions the driving and control activity dominates.
The drivers, pilots, captains and transportation systems dispatchers and controllers are usually exposed to considerably long and exhausting Services, which could last up to 8 and even more hours.
It is generally known that the human subject is not able to retain in the state of vigilance without brakes and relaxation. Usually, its ability to concentrate his/her attention to some activity (like driving of systém control) decreases considerably soon, mainly after 45 or 60 niinutes only.
The decrease of human subject attention in the course of his/her activity is not monotone of course, it can involve several periods of temporary increases and decreases. However, without exception, if the exposition is long enough, the subject attention finally falls under the limit of acceptability for safe and reliable activity of the particular type. The subject activity becomes dangerous for him/her, his/her environment and for the driven vehicle, plane, ship or the controlled transportation system too. Finally, the subject falls in the stage of the so-called micro-sleep, in which he/she is not able to produce the particular driving or control activity at all.
A considerably large effort was given to the analysis of negative impacts of this factor. Unfortunately, the used methodology for such analyses differs up to now in many countries, so that the results are not quite comparable. However, one can estimate that between 15 and 40% of all the accidents on the roads are caused by the non-satisfactory level of the human subject attention. If we take into account that the average economic loss of one mortal road accident is estimated to more than 1 million Euro and if the density of such accidents is taken into account as well, we come to a tremendous figure, which has to be enlarged more by the estimation of losses of non-mortal accidents.
The topic of the presented paper is the discussion of possible approaches to the homogenization of synaptic information functions from the system-engineering point of view. Homogenization is a significant step to the construction of effective models that should enable understanding synaptic information functions. An attempt of a pragrnatic language translation within the niultilingual environrnent is proposed and briefly discussed.