Energy transfer of aromatic amino acids in photosystem 2 (PS2) core antenna complexes CP43 and CP47 was studied using absorption spectroscopy, fluorescence spectroscopy, and the 0.35 nm crystal structure of PS2 core complex. The energy of tyrosines (Tyrs) was not effectively transferred to tryptophans (Trps) in CP43 and CP47. The fluorescence emission spectrum of CP43 and CP47 by excitation at 280 nm should be a superposition of the Tyr and Trp fluorescence emission spectra. The aromatic amino acids in CP43 and CP47 could transfer their energy to chlorophyll (Chl) a molecules by the Dexter mechanism and the Föster mechanism, and the energy transfer efficiency in CP47 was much higher than that in CP43. In CP47 the Föster mechanism must be the dominant energy transfer mechanism between aromatic amino acids and Chl a molecules, whereas in CP43 the Dexter mechanism must be the dominant one. Hence solar ultraviolet radiation brings not only damages but also benefits to plants. and Y. G. Qu .... [et al.].
The generation of superoxide anion radical (O2.-) in the cytochrome b6f complex (Cyt b6f) of spinach under high-light illumination was studied using electron paramagnetic resonance spectroscopy. The generation of O2.- was lost in the absence of molecular oxygen. It was also suppressed in the presence of NaN3 and could be scavenged by extraneous antioxidants such as ascorbate, β-carotene, and glutathione. The results also indicate that O2.-, which is produced under high-light illumination of the Cyt b6f from spinach, might be generated from a reaction involing 1O2, and the Rieske Fe-S protein could serve as the electron donor in the O2.- production. The mechanism of photoprotection of the Cyt b6f complex by antioxidants is discussed. and M. Sang ... [et al.].