The long-term impact of elevated concentration of CO2 on assimilation activity of sun-exposed (E) versus shaded (S) foliage was investigated in a Norway spruce stand [Picea abies (L.) Karst, age 14 years] after three years of cultivation in two domes with adjustable windows (DAW). One DAW was supplied with ambient air [AC, ca. 350 µmol(CO2) mol-1) and the second with elevated CO2 concentration [EC = AC plus 350 µmol(CO2) mol-1]. The pronounced vertical profile of the photosynthetic photon flux density (PPFD) led to the typical differentiation of the photosynthetic apparatus between the shaded and sun needles. Namely, photon-saturated values of maximal net photosynthetic rate (PNmax) and apparent quantum yield (α) were significantly higher/lower for E-needles as compared with the S-ones. The prolonged exposure to EC was responsible for the apparent assimilatory activity stimulation observed mainly in deeply shaded needles. The degree of this stimulation decreases in the order: S-needles dense part > S-needles sparse part > E-needles dense part > E-needles sparse part. In exposed needles some signals on a manifestation of the acclimation depression of the photosynthetic activity were found. The long-term effect of EC was responsible for the decrease of nitrogen content of needles and for its smoother gradient between E- and S-needles. The obtained results indicate that the E- and S-foliage respond differently to the long-term impact of EC. and M. V. Marek ... [et al.].
Cloned saplings of beech (7-y-old) were exposed to enhanced UV-B irradiation (+25 %) continuously over three growing seasons (1999-2001). Analysis of CO2 assimilation, variable chlorophyll (Chl) a fluorescence, and pigment composition was performed in late summer of the third growing season to evaluate the influence of long-term elevated UV-B irradiation. This influence was responsible for the stimulation of the net assimilation rate (PN) over a range of irradiances. The increase in PN was partially connected to increase of the area leaf mass, and thus to the increased leaf thickness. Even a higher degree of UV-B induced stimulation was observed at the level of photosystem 2 (PS2) photochemistry as judged from the irradiance response of electron transport rate and photochemical quenching of Chl a. The remarkably low irradiance-induced non-photochemical quenching of maximum Chl a fluorescence (NPQ) in the UV-B plants over the entire range of applied irradiances was attributed both to the reduced demand on non-radiative dissipation processes and to the considerably reduced contribution of the quenching localised in the inactivated PS2 reaction centres. Neither the content of Chls and total carotenoids expressed per leaf area nor the contents of lutein, neoxanthin, and the pool of xanthophyll cycle pigments (VAZ) were affected under the elevated UV-B. However, the contributions of antheraxanthin (A) and zeaxanthin (Z) to the entire VAZ pool in the dark-adapted UV-B treated plants were 1.61 and 2.14 times higher than in control leaves. Surprisingly, the retained A+Z in UV-B treated plants was not accompanied with long-term down-regulation of the PS2 photochemical efficiency, but it facilitated the non-radiative dissipation of excitation energy within light-harvesting complexes (LHC) of PS2. Thus, in the beech leaves the accumulation of A+Z, induced by other factors than excess irradiance itself, supports the resistance of PS2 against combined effects of high irradiance and elevated UV-B. and M. Šprtová ... [et al.].
Functional differentiation of assimilation activity of sun versus shade foliage was analysed in a Norway spruce monoculture stand (age 15 years). The investigated stand density (leaf area index 8.6) and crown structure led to variation in the photosynthetically active photon flux density (PPFD) within the crowns of the sampled trees. At the saturating PPFD, the maximum rate of CO2 uptake (PNmax) of exposed shoots (E-shoots) was 1.7 times that of the shaded shoots (S-shoots). The apparent quantum yield (α) of E-shoots was 0.9 times that of the S-shoots. A lower ability to use excess energy at high PPFD in photosynthesis was observed in the S-layer. The CO2- and PPFD-saturated rate of CO2 uptake (PNsat) of the E-shoots was 1.12 times and the carboxylation efficiency (τ) 1.6 times that of the S-shoots. The CO2-saturated rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) carboxylation (VCmax) and of actual electron transport (Jamax) in the S-needles amounted to 89 and 95 % of VCmax and Jamax in the E-needles. Thus, in addition to the irradiation conditions and thus limitation by low Ja, the important limitation of photosynthesis in shade needles is due to carboxylation. This limitation of photosynthesis is accompanied by lower stomatal conductance. and M. Šprtová, M. V. Marek.
Twelve-year-old Norway spruce (Picea abies [L.] Karst.) trees were exposed to ambient (AC) or elevated (EC) [ambient + 350 µmol(CO2) mol-1] CO2 concentrations in open-top-chamber (OTC) experiment under the field conditions of a mountain stand. Short-term (4 weeks, beginning of the vegetation season) and long-term (4 growing seasons, end of the vegetation season) effects of this treatment on biochemical parameters of CO2 assimilation were evaluated. A combination of gas exchange, fluorescence of chlorophyll a, and application of a mathematical model of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activity was used. The analysis showed that the depression of photosynthetic activity by long-term impact of elevated CO2 was mainly caused by decreased RuBPCO carboxylation rate. The electron transport rate as well as the rate of ribulose-1,5-bisphosphate (RuBP) formation were also modified. These modifications to photosynthetic assimilation depended on time during the growing season. Changes in the spring were caused mainly by local deficiency of nitrogen in the assimilating tissue. However, the strong depression of assimilation observed in the autumn months was the result of insufficient carbon sink capacity. and O. Urban, M. V. Marek.
Temperature responses of carbon assimilation processes were studied in four dominant species from mountain grassland ecosystem, i.e. Holcus mollis (L.), Hypericum maculatum (Cr.), Festuca rubra (L.), and Nardus stricta (L.), using the gas exchange technique. Leaf temperature (TL) of all species was adjusted within the range 13-30 °C using the Peltier thermoelectric cooler. The temperature responses of metabolic processes were subsequently modelled using the Arrhenius exponential function involving the temperature coefficient Q10. The expected increase of global temperature led to a significant increase of dark respiration rate
(RD; Q 10 = 2.0±0.5), maximum carboxylation rate (VCmax; Q10 = 2.2±0.6), and maximum electron transport rate (J max; Q 10 = 1.6±0.4) in dominant species of mountain grassland ecosystems. Contrariwise, the ratio between Jmax and VCmax linearly decreased with TL [y = -0.884 TL + 5.24; r2 = 0.78]. Hence temperature did not control the ratio between intercellular and ambient CO2 concentration, apparent quantum efficiency, and photon-saturated CO2 assimilation rate (Pmax). Pmax primarily correlated with maximum stomatal conductance irrespective of TL. Water use efficiency tended to decrease with TL [y = -0.21 TL + 8.1;
r2 = 0.87]. and O. Urban ... [et al.].