Twelve-year-old Norway spruce (Picea abies [L.] Karst.) were exposed to ambient (AC) or elevated (EC) [ambient + 350 μmol(CO2) mol-1] CO2 concentration [CO2] using the facilities of open-top-chambers (OTCs) and glass domes (GDs). A combination of gas exchange measurements and application of a biochemical model of photosynthesis were used for the evaluation of CO2 assimilation characteristics. Morphological change was assessed on the base of specific leaf area (SLA). Nitrogen (N) content in the assimilation apparatus was considered a main factor influencing the biochemical capacity. Three experiments confirm the hypothesis that an adjustment of photosynthetic capacity under EC is controlled by the combination of biochemical, morphological, and physiological feedback mechanisms. We observed periodicity of down-regulation of photosynthetic capacity (Experiment No. 1) during the vegetation seasons. In the spring months (May-June), i.e. during the occurrence of active carbon sink associated with the formation of new foliage, up-regulation (10-35 %) of photosynthetic capacity (PNsat) was observed. On the contrary, in the autumn months (September-October) down-regulation (25-35 %) of PNsat was recorded that was mainly associated with reduced carbon sink strength and biochemical change, i.e. decrease of N status (up to 32 %) and accumulation of saccharides (up to 72 %) in leaves. Different adjustments of photosynthetic activities were observed in current (C) and one-year-old (C-1) needles exposed to EC (Experiment No. 2). Strong down-regulation of PNsat and the diminution of the initial stimulation of photosynthetic rate (PNmax) was associated with decreases of both ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation activity (by 32 %) and RuBP regeneration (by 40 %). This performance was tightly correlated with the absence of active carbon sinks, decrease of N content, and starch accumulation in C-1 needles. Finally, different responses of sun- and shade-adapted needles to EC (Experiment No. 3) were associated with the balance between morphological and biochemical changes. Observed PNsat down-regulation (by 22 %) of exposed needles in EC was predominantly caused by effects of both higher assimilate accumulation and stronger N dilution, resulting from higher absolute photosynthetic rates and incident irradiances in the upper canopy. and O. Urban ... t al.].
We present a new technological approach for in situ investigation of long-term impacts of elevated CO2 concentration (EC) on juvenile forests characterised by an intensive community level and canopy closure phase. Construction of the glass domes is based on the properties of earlier tested open-top chambers (OTCs). An air climatisation device together with an adjustable window system, that forms the shell cover of the domes, is able to keep the required [CO2] in both time and spatial scales with the relatively small consumption of supplied CO2. This is achieved by half-closing the windows on the windward side. We evidenced good coupling of treated trees to the atmosphere, including mutual interactions among trees. The semi-open design of the domes moderates the problems of strong wind, humidity, and temperature gradients associated with OTCs. The frequency distributions of the environmental variations within the domes indicate that: air temperature is maintained within the ambient range ±1.0 °C for ca. 80 % of the time, and changes in the relative air humidity vary from -15 to 0 % for ca. 82 % of the time. The most important chamber effect is associated with the penetration of solar irradiance, which is reduced by 26 % compared to the open condition outside the domes. The dimensions of the domes are 10×10 m in length and 7 m high in the central part. The experiment was done in three identical stands of twelve-year-old Norway spruce trees. The 56 trees are planted at two different spacings to estimate the impacts of stand spatial structure in relation to EC. and O. Urban ... [et al.].
The long-term impact of elevated concentration of CO2 on assimilation activity of sun-exposed (E) versus shaded (S) foliage was investigated in a Norway spruce stand [Picea abies (L.) Karst, age 14 years] after three years of cultivation in two domes with adjustable windows (DAW). One DAW was supplied with ambient air [AC, ca. 350 µmol(CO2) mol-1) and the second with elevated CO2 concentration [EC = AC plus 350 µmol(CO2) mol-1]. The pronounced vertical profile of the photosynthetic photon flux density (PPFD) led to the typical differentiation of the photosynthetic apparatus between the shaded and sun needles. Namely, photon-saturated values of maximal net photosynthetic rate (PNmax) and apparent quantum yield (α) were significantly higher/lower for E-needles as compared with the S-ones. The prolonged exposure to EC was responsible for the apparent assimilatory activity stimulation observed mainly in deeply shaded needles. The degree of this stimulation decreases in the order: S-needles dense part > S-needles sparse part > E-needles dense part > E-needles sparse part. In exposed needles some signals on a manifestation of the acclimation depression of the photosynthetic activity were found. The long-term effect of EC was responsible for the decrease of nitrogen content of needles and for its smoother gradient between E- and S-needles. The obtained results indicate that the E- and S-foliage respond differently to the long-term impact of EC. and M. V. Marek ... [et al.].