In order to assess the long-term impacts of saline groundwater irrigation to Haloxylon ammodendron, one of the main shrubs in the Tarim desert highway ecological shelterbelt, we irrigated the H. ammodendron seedlings with progressive saline groundwater (3-30 g L-1, simulation environment in the Tarim desert highway ecological shelterbelt) and investigated the diurnal variations of chlorophyll a (Chl a) fluorescence parameters, such as maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), quantum yield of photochemical energy conversion in PSII (YII), the apparent rate of electron transport at the PSII level (ETR), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ), quantum yield of nonregulated non-photochemical energy loss in PSII (YNO) and quantum yield of regulated non-photochemical energy loss in PSII (YII), at approximately 2-h intervals. Fv/Fm with 5 g L-1 (S2) was lower than that with 2 g L-1 (S1) but a little higher than 20 g L-1 (S5), respectively. Under the low light [photosyntheticallyactive radiation (PAR) ≤ 250 μmol m-2 s-1, at 08:00, 10:00 and 20:00 h of the local time], S1 kept the lowest YII and the highest YNPQ; while under the high light (PAR ≥ 1500 μmol m-2 s-1), the YII performed S1>S2>S5, and the reverse YNPQ; under mild light (250 μmol mt-2 s-1 ≤ PAR ≤ 1500 μmol m-2 s-1), S1 remained the highest YII, no matter the light and the salinity, the similar YNO almost occurred basically. The results showed that the sand-binding plant H. ammodendron could regulate its energy-utilizing strategies. The S2 might be the most suitable salinity of the irrigation water for H. ammodendron in the Tarim desert highway ecological shelterbelt in the northwest of China. and W. Han ... [et al.].
In our earlier works, we have identified rate-limiting steps in the dark-to-light transition of PSII. By measuring chlorophyll a fluorescence transients elicited by single-turnover saturating flashes (STSFs) we have shown that in diuron-treated samples an STSF generates only F1 (< Fm) fluorescence level, and to produce the maximum (Fm) level, additional excitations are required, which, however, can only be effective if sufficiently long Δτ waiting times are allowed between the excitations. Biological variations in the half-rise time (Δτ1/2) of the fluorescence increment suggest that it may be sensitive to the physicochemical environment of PSII. Here, we investigated the influence of the lipidic environment on Δτ1/2 of PSII core complexes of Thermosynechococcus vulcanus. We found that while non-native lipids had no noticeable effects, thylakoid membrane lipids considerably shortened the Δτ1/2, from ~ 1 ms to ~ 0.2 ms. The importance of the presence of native lipids was confirmed by obtaining similarly short Δτ1/2 values in the whole T. vulcanus cells and isolated pea thylakoid membranes. Minor, lipid-dependent reorganizations were also observed by steady-state and time-resolved spectroscopic measurements. These data show that the processes beyond the dark-to-light transition of PSII depend significantly on the lipid matrix of the reaction center.
Two greenhouse experiments were conducted in order to investigate the effects of different levels of water stress on gas exchange, chlorophyll fluorescence, chlorophyll content, antioxidant enzyme activities, lipid peroxidation, and yield of tomato plants (Solanum lycopersicum cv. Jinfen 2). Four levels of soil water content were used: control (75 to 80% of field water capacity), mild water stress (55 to 60%), moderate water stress (45 to 50%), and severe water stress (35 to 40%). The controlled irrigation was initiated from the third leaf stage until maturity. The results of
two-year trials indicated that the stomatal conductance, net photosynthetic rate, light-saturated photosynthetic rate, and saturation radiation decreased generally under all levels of water stress during all developmental stages, while compensation radiation and dark respiration rate increased generally. Water stress also declined maximum quantum yield of PSII photochemistry, electron transfer rate, and effective quantum yield of PSII photochemistry, while nonphotochemical quenching increased in all developmental stages. All levels of water stress also caused a marked reduction of chlorophyll a, chlorophyll b, and total chlorophyll content in all developmental stages, while activities of antioxidant enzymes, such as superoxide dismutase, peroxidase, and catalase, and lipid peroxidation increased., X. K. Yuan, Z. Q. Yang , Y. X. Li, Q. Liu, W. Han., and Obsahuje seznam literatury
In order to investigate the effects of low irradiation (LI) on cucumber (Cucumis sativus L. cv. Jinyou 35) during a ripening stage, our experiment was carried out in a climate chamber. Two levels of PAR were set for plants: normal irradiation [NI, 600 μmol(photon) m-2 s-1] and low irradiation [LI, 100 μmol(photon) m-2 s-1], respectively. The experiments lasted for 9 d; then both groups of plants were transferred under NI to recover for 16 d. The plants showed severe chlorosis after the LI treatment. Chlorophyll (Chl) a, initial slope, photosynthetic rate at saturating irradiation (P max), light saturation point, maximal photochemical efficiency of PSII (Fv/Fm), electron transport rate of PSII (ETR), soluble protein content, and catalase (CAT) activity in cucumber leaves decreased under LI stress, while Chl b, carotenoids, light compensation point, nonphotochemical quenching (qN), superoxide dismutase (SOD), and malondialdehyde (MDA) exhibited an increasing trend under LI. After 16 d of recovery, values of P max, Fv/Fm, ETR, qN, SOD, CAT, MDA, and soluble protein were close to those of the control after one, three, and five days of the LI treatment, while those kept under LI for 7 and 9 d could not return to the control level. Therefore, 7 d of LI stress was a meteorological disaster index for LI in cucumber at the fruit stage., Z. Q. Yang, C. H. Yuan, W. Han, Y. X. Li, F. Xiao., and Obsahuje seznam literatury