The seedlings of wheat were treated by salt-stress (SS, molar ratio of NaCl: Na2SO4 = 1:1) and alkali-stress (AS, molar ratio of NaHCO3: Na2CO3 = 1:1). Relative growth rate (RGR), leaf area, and water content decreased with increasing salinity, and the extents of the reduction under AS were greater than those under SS. The contents of photosynthetic pigments did not decrease under SS, but increased at low salinity. On the contrary, the contents of photosynthetic pigments decreased sharply under AS with increasing salinity. Under SS, the changes of net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were similar and all varied in a single-peak curve with increasing salinity, and they were lower than those of control only at salinity over 150 mM. Under AS, PN, gs, and E decreased sharply with rising salinity. The decrease of gs might cause the obvious decreases of E and intercellular CO2 concentration, and the increase of water use efficiency under both stresses. The Na+ content and Na+/K+ ratio in shoot increased and the K+ content in shoot decreased under both stresses, and the changing extents under AS were greater than those under SS. Thus SS and AS are two distinctive stresses with different characters; the destructive effects of AS on the growth and photosynthesis of wheat are more severe than those under SS. High pH is the key feature of the AS that is different from SS. The buffer capacity is essentially the measure of high pH action on plant. The deposition of mineral elements and the intracellular unbalance of Na+ and K+ caused by the high pH at AS might be the reason of the decrease of PN and gs and of the destruction of photosynthetic pigments. and C. W. Yang ... [et al.].
Seedlings of Chloris virgata were treated with varying (0-160 mM) salt-stress (SS; 1 : 1 molar ratio of NaCl to Na2SO4) or alkali-stress (AS; 1 : 1 molar ratio of NaHCO3 to Na2CO3). To compare these effects, relative growth rates (RGR), stored energy, photosynthetic pigment contents, net photosynthetic rates, stomatal conductance, and transpiration rates were determined. Both stresses did not change significantly the photosynthetic parameters of C. virgata under moderate stress (below 120 mM). Photosynthetic ability decreased significantly only at high stress (160 mM). Thus C. virgata, a natural alkali-resistant halophyte, adapts better to both kinds of stress. The inhibition effects of AS on RGR and energy storage of C. virgata were significantly greater than that of SS of the same intensity. The energy consumption of C. virgata was considerably greater while resisting AS than while resisting SS. and C. W. Yang ... [et al.]
Cuttings of P. przewalski were exposed to two different watering regimes which were watered to 100 and 25 % of field capacity (WW and WS, respectively). Drought stress not only significantly decreased net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), efficiency of photosystem 2 (PS2) (Fv/Fm and yield), and increased intrinsic water use efficiency (WUEi) under controlled optimal conditions, but also altered the diurnal changes of gas exchange, chlorophyll fluorescence, and WUEi. On the other hand, WS also affected the
PN-photosynthetically active radiation (PAR) response curve. Under drought stress, PN peak appeared earlier (at about 10:30 of local time) than under WW condition (at about 12:30). At midday, there was a depression in PN for WS plants, but not for WW plants, and it could be caused by the whole microclimate, especially high temperature, low relative humidity, and high PAR. There were stomatal and non-stomatal limitations to photosynthesis. Stomatal limitation dominated in the morning, and low PN at midday was caused by both stomatal and non-stomatal limitations, whereas non-stomatal limitation dominated in the afternoon. In addition, drought stress also increased compensation irradiance and dark respiration rate, and decreased saturation irradiance and maximum net photosynthetic rate. Thus drought stress decreased plant assimilation and increased dissimilation through affected gas exchange, the diurnal pattern of gas exchange, and photosynthesis-PAR response curve, thereby reducing plant growth and productivity. and C. Y. Yin, F. Berninger, C. Y. Li.