‘Hass‘ and ‘Fuerte‘ avocado plants were grown under well-watered or waterlogged conditions. Results indicated significant effects on the majority of the allometric parameters in waterlogged plants, with ‘Fuerte‘ displaying a more pronounced growth inhibition. Waterlogged conditions caused a progressive and simultaneous decline in net photosynthetic rate and stomatal conductance, earlier in ‘Fuerte‘ than in ‘Hass‘. Maximal potential quantum yield of PSII was unaffected by the soil water regime and/or variety and leaf water potential values in waterlogged plants were not more negative compared with control plants. ‘Fuerte‘ waterlogged plants exhibited increased contents of thiobarbituric acid reactive substances, whereas oxidative injury was not detected in ‘Hass‘. Finally, none of the two cultivars displayed valuable antioxidant potential, as evidenced by the decreased activities of the antioxidant enzymes superoxide dismutase, guaiacol peroxidase, glutathione peroxidase, and ascorbate peroxidase., G. Doupis, N. Kavroulakis, G. Psarras, I. E. Papadakis., and Obsahuje seznam literatury
The present study attempts to determine how some physiological and reproductive functions of olive tree (Olea europaea L., cv. Koroneiki) respond to enhanced UV-B radiation or heat. Enhanced UV-B radiation was applied to (1) three-year-old potted plants in an open nursery (corresponded to ca. 16% ozone depletion), and (2) in vitro cultured pollen samples (220 μmol m-2 s-1, PAR = 400-700 nm + UV-B at 7.5, 15.0, or 22.5 kJ m-2 d-1). Potted olive plants were also subjected to high temperature (38 +- 4°C) for 28 h to mimic heat levels regularly measured in olive growing areas. A significant effect of UV-B on photosynthetic rate was observed. However, enhanced UV-B radiation did affect neither chlorophyll nor carotenoid content, supporting previous reports on hardiness of the photosynthetic apparatus in olive. Increased superoxide dismutase activity was observed in UV-B-treated olive plants (+ 225%), whereas no effect was found in the plants under heat stress. Neither UV-B and nor heat did affect H2O2 accumulation in the plant tissues. However, the same treatments resulted in enhanced lipid peroxidation (+ 18% for UV-B and + 15% for heat), which is likely linked to other reactive oxygen species. The increased guaiacol peroxidase activity observed in both treatments (+ 32% for UV-B and + 49% for heat) is related to the defense against oxidative membrane damage. The observed reduction in pollen germination (20-39%) and tube length (11-44%) could have serious implications on olive yields, especially for low fruit-setting cultivars or in years and environments with additional unfavorable conditions. UV-B and heat effects described here support the hypothesis that plant response to a given stressor is affected by the overall context and that a holistic approach is necessary to determine plant strategies for climate change adaptation., G. C. Koubouris, N. Kavroulakis, I. T. Metzidakis, M. D. Vasilakakis, A. Sofo., and Obsahuje bibliografii