The knowledge of snowpack distribution at a catchment scale is important to predict the snowmelt runoff. The objective of this study is to select and quantify the most important factors governing the snowpack distribution, with special interest in the role of different canopy structure. We applied a simple distributed sampling design with measurement of snow depth and snow water equivalent (SWE) at a catchment scale. We selected eleven predictors related to character of specific localities (such as elevation, slope orientation and leaf area index) and to winter meteorological conditions (such as irradiance, sum of positive air temperature and sum of new snow depth). The forest canopy structure was described using parameters calculated from hemispherical photographs. A degree-day approach was used to calculate melt factors. Principal component analysis, cluster analysis and Spearman rank correlation were applied to reduce the number of predictors and to analyze measured data. The SWE in forest sites was by 40% lower than in open areas, but this value depended on the canopy structure. The snow ablation in large openings was on average almost two times faster compared to forest sites. The snow ablation in the forest was by 18% faster after forest defoliation (due to the bark beetle). The results from multivariate analyses showed that the leaf area index was a better predictor to explain the SWE distribution during accumulation period, while irradiance was better predictor during snowmelt period. Despite some uncertainty, parameters derived from hemispherical photographs may replace measured incoming solar radiation if this meteorological variable is not available.
This study evaluates MODIS snow cover characteristics for large number of snowmelt runoff events in 145 catchments from 9 countries in Europe. The analysis is based on open discharge daily time series from the Global Runoff Data Center database and daily MODIS snow cover data. Runoff events are identified by a base flow separation approach. The MODIS snow cover characteristics are derived from Terra 500 m observations (MOD10A1 dataset, V005) in the period 2000–2015 and include snow cover area, cloud coverage, regional snowline elevation (RSLE) and its changes during the snowmelt runoff events. The snowmelt events are identified by using estimated RSLE changes during a runoff event. The results indicate that in the majority of catchments there are between 3 and 6 snowmelt runoff events per year. The mean duration between the start and peak of snowmelt runoff events is about 3 days and the proportion of snowmelt events in all runoff events tends to increase with the maximum elevation of catchments. Clouds limit the estimation of snow cover area and RSLE, particularly for dates of runoff peaks. In most of the catchments, the median of cloud coverage during runoff peaks is larger than 80%. The mean minimum RSLE, which represents the conditions at the beginning of snowmelt events, is situated approximately at the mean catchment elevation. It means that snowmelt events do not start only during maximum snow cover conditions, but also after this maximum. The mean RSLE during snowmelt peaks is on average 170 m lower than at the start of the snowmelt events, but there is a large regional variability.