The purpose of the study was to check whether hypoxia of corneal tissue increases the collagenolytic activity due to release of reactive oxygen and nitrogen species. Rats were exposed to hypoxia 10 % O2 for 4, 14, and 21 days. The radical tissue injury was measured by the level of nitrotyrosine and changes in the lipoperoxide-related fluorophores. Collagen protein composition was analyzed by slab gel electrophoresis. The activity of gelatinolytic enzymes was studied using the zymography. The vascularization of the corneas was measured. We found no differences in the corneal tissue in the gel electrophoretic profile of collagenous proteins and gelatinolytic activity between normoxic and hypoxic rats. We did not find any sign of radical tissue injury. There were no changes in the vascularization of corneas after exposition to hypoxia. The environmental 10 % hypoxia does not induce radical tissue injury and an increase of collagenolytic activity in the rat cornea., G. Mahelková, J. Korynta, A. Moravová, J. Novotná, R. Vytášek, J. Wilhelm., and Obsahuje bibliografii a bibliografické odkazy
Chronic lung hypoxia results in hypoxic pulmonary hypertension. Concomitant chronic hypercapnia partly inhibits the effect of hypoxia on pulmonary vasculature. Adult male rats exposed to 3 weeks hypoxia (Fi02=0.1) combined with hypercapnia (FiC02=0.04-0.05) had lower pulmonary arterial blood pressure, increased weight of the right heart ventricle, and less pronounced structural remodeling of the peripheral pulmonary arteries compared with rats exposed only to chronic hypoxia (Fi02=0.1). According to our hypothesis, hypoxic pulmonary hypertension is triggered by hypoxic injury to the walls of the peripheral pulmonary arteries. Hypercapnia inhibits release of both oxygen radicals and nitric oxide at the beginning of exposure to the hypoxic environment. The plasma concentration of nitrotyrosine, the marker of peroxynitrite activity, is lower in hypoxic rats exposed to hypercapnia than in those exposed to hypoxia alone. Hypercapnia blunts hypoxia-induced collagenolysis in the walls of prealveolar pulmonary arteries. We conclude that hypercapnia inhibits the development of hypoxic pulmonary hypertension by the inhibition of radical injury to the walls of peripheral pulmonary arteries., M. Chovanec ... [et al.]., and Obsahuje seznam literatury
Chronic hypoxia results in hypoxic pulmonary hypertension characterized by fibrotization and muscularization of the walls of peripheral pulmonary arteries. This vessel remodeling is accompanied by an increase in the amount of lung mast cells (LMC) and the presence of small collagen cleavage products in the vessel walls. We hypothesize that hypoxia activates LMC, which release matrix metalloproteinases (MMPs) cleaving collagen and starting increased turnover of connective tissue proteins. This study was designed to determine whether in vitro hypoxia stimulates production of MMPs in rat LMC and increases their collagenolytic activity. The LMC were separated on the Percoll gradient and then were divided into two groups and cultivated for 24 h in 21 % O2 + 5 % CO2 or in 10 % O2 + 5 % CO2. Presence of the rat interstitial tissue collagenase (MMP-13) in LMC was visualized by immunohistological staining and confirmed by Western blot analysis. Total MMPs activity and tryptase activity were measured in both cultivation media and cellular extracts. Exposure to hypoxia in vitro increased the amount of cells positively labeled by anti-MMP-13 antibody as well as activities of all measured enzymes. The results therefore support the concept that LMC are an important source of increased collagenolytic activity in chronic hypoxia., H. Maxová, J. Novotná, L. Vajner, H. Tomášová, R. Vytášek, M. Vízek, L. Bačáková, V. Valoušková, T. Eliášová, J. Herget., and Obsahuje bibliografii a bibliografické odkazy
Exposure to chronic hypoxia results in hypoxic pulmonary hypertension characterized by structural remodeling of peripheral pulmonary vasculature. An important part of this remodeling is an increase of collagen turnover and deposition of newly formed collagen fibrils in the vascular walls. The activity of collagenolytic metalloproteinases in the lung tissue is notably increased in the first days of exposure to hypoxia. The increased collagenolytic activity results in the appearance of collagen cleavages, which may be implied in the triggering of mesenchymal proliferation in peripheral pulmonary arteries. We hypothesize that radical injury to pulmonary vascular walls is involved in collagenolytic metalloproteinase activation., J. Novotná, J. Herget., and Obsahuje bibliografii
Matrix metalloproteinases (MMPs) is a family of proteolytic enzymes involved in remodeling of extracellular matrix. Although proteolytic enzymes are produced by many cell types, mast cells seem to be more important than other types in remodeling of pulmonary arteries during hypoxia. Therefore, we tested in vitro production of MMPs and serine proteases in four cell types (mast cells, fibroblasts, vascular smooth muscle cells and endothelial cells) cultivated for 48 h under normoxic or hypoxic (3 % O2) conditions. MMP-13 was visualized by immunohistochemistry, MMP-2 and MMP-9 were detected by zymography in cell lysates. Enzymatic activities (MMPs, tryptase and chymase) were estimated in the cultivation media. Hypoxia had a minimal effect on total MMP activity in the cultivation media of all types of cells, but immunofluorescence revealed higher intensity of MMP-13 in the cells exposed to hypoxia except of fibroblasts. Tryptase activity was three times higher and chymase activity twice higher in mast cells cultivated in hypoxia than in those cultured in normoxia. Among all cell types studied here, mast cells are the most abundant source of proteolytic enzymes under normoxic and hypoxic conditions. Moreover, in these cells hypoxia increases the production of both specific serine proteases tryptase and chymase, which can act as MMPs activators., H. Maxová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy