This study investigated quantitated expression of dopamine 2 receptor (D2R) and somatostatin receptors of the five types (SSTR1-SSTR5) in a large series of clinically non-functioning pituitary adenomas (CNFAs). Co-expression of these receptors in individual adenomas was studied as well as correlation between receptor types. Adenoma tissue from 198 patients who underwent surgery for CNFAs was analyzed by immunohistochemistry and quantitative real-time PCR. D2R and SSTR1-3 mRNA was expressed in all 198 adenomas. SSTR4 and SSTR5 were detectable in 85 % and 61 % of adenomas, respectively. Expression of D2R was significantly higher than that of the somatostatin receptors. The median relative expressions were as follows from highest D2R >> SSTR3 > SSTR2 > SSTR1 > SSTR5 > SSTR4. High relative expression (ratio to β-glucuronidase mRNA > 1) of D2R was found in 60 % of tumors, high expression of SSTR1 in 7.5 %, SSTR2 in 7 %, SSTR3 in 4 % and SSTR5 in 0.5 %. The quantity of D2R correlated positively with expression of SSTR2 and SSTR3, and negatively with SSTR1 and SSTR5. Among histological adenoma types, SSTR1 was significantly higher in null-cell adenomas and SSTR3 was lower in silent corticotroph adenomas. In conclusions, in CNFAs, high expression of somatostatin receptors is much less common than that of D2R, and co-expression of both these receptors is exceptional. D2R and SSTR3 seem to be the most promising targets for pharmacological treatment., F. Gabalec, M. Drastikova, T. Cesak, D. Netuka, V. Masopust, J. Machac, J. marek, J. Cap, M. Beranek., and Obsahuje bibliografii
Ionizing radiation and somatostatin analogues are used for acromegaly treatment to achieve normalization or reduction of growth hormone hypersecretion and tumor shrinkage. In this study, we investigated a combination of somatostatin (SS14) with ionizing radiation of 60Co and its effect on reparation of radiation-induced damage and cell death of somatomammotroph pituitary cells GH3. Doses of γ-radiation 20-50 Gy were shown to inhibit proliferation and induce apoptosis in GH3 cells regardless of somatostatin presence. It has been found that the D0 value for GH3 cells was 2.5 Gy. Somatostatin treatment increased radiosensitivity of GH3 cells, so that D0 value decreased to 2.2 Gy. We detected quick phosphorylation of histone H2A.X upon irradiation by the dose 20 Gy and its colocalization with phosphorylated protein Nbs-1 in the site of double strand break of DNA (DSB). Number of DSB decreased significantly 24 h after irradiation, however, clearly distinguished foci persisted, indicating non repaired DSB, after irradiation alone or after combined treatment by irradiation and SS14. We found that SS14 alone triggers phosphorylation of Nbs1 (p-Nbs1), which correlates with antiproliferative effect of SS14. Irradiation also increased the presence of p-Nbs1. Most intensive phosphorylation of Nbs1 was detected after combined treatment of irradiation and SS14. The decrease of the number of the DSB foci 24 h after treatment shows a significant capacity of repair systems of GH3 cells. In spite of this, large number of unrepaired DSB persists for 24 h after the treatment. We conclude that SS14 does not have a radioprotective effect on somatomammotroph GH3 cells., M. Řezáčová, J. Čáp, D. Vokurková, E. Lukášová, J. Vávrová, J. Cerman, V. Mašín, N. Mazánková., and Obsahuje bibliografii a bibliografické odkazy