Five-year-old trees of deciduous Quercus robur L., evergreen Q. ilex L., and their semideciduous hybrid, Q. × turneri Willd. (var. pseudoturneri), growing in pots, were subjected to drought stress by withholding water for 18-22 days, until leaf water potentials decreased below -2 MPa. Gas-exchange rates, oxygen evolution, and modulated chlorophyll (Chl) fluorescence measurements revealed that by strong stomata closure and declining photosynthetic capacity down to approximately 50%, all three taxa responded with strongly reduced photosynthesis rates. In Q. robur, photochemical quenching of the drought-stressed plants was much lower than in nonstressed controls. Dissection of the occurring events in the photosynthetic electron transport chain by fast Chl fluorescence induction analysis with the JIP-test were discussed. and S. Koller, V. Holland, W. Brüggemann.
Metabolite changes and senescence behaviour after mechanical phloem girdling were studied in leaf tissue of Quercus pubescens. Sugar accumulation is not only considered to be an important part of several developmental signalling pathways, but is also seen as one of the basic triggers for senescence induction, or at least an obligatory accessory phenomenon. Our survey showed that an accumulation of the soluble sugars, glucose and fructose, was not on its own obligatorily connected with the induction of leaf senescence, since no indication or even an onset of senescence could be observed during the course of the experiment. Instead, we observed an inhibition of leaf development with a decrease of photosynthesis and a slow-down of development in nearly all chlorophyll a fluorescence analysis parameters using the JIP-test. We detected a change of metabolites linked to oxidative stress, possibly due to an overexcitation of the developmentally inhibited photosynthetic apparatus., V. Holland, L. Fragner, T. Jungcurt, W. Weckwerth, W. Brüggemann., and Obsahuje bibliografii
In search for new forestation tree species for future Central European climate conditions, Mediterranean evergreen oak taxa are investigated for their summer drought- and winter frost-hardiness. Here we report on the winter performance of the photosynthetic apparatus of Quercus × hispanica Lam. and its evergreen parental species Q. suber L. under extraordinary harsh winter conditions. Both taxa showed a strong decline of photosystem II (PSII) quantum efficiency (Fv/Fm) with a concomitant increase in the deepoxidation state (DES) of the xanthophyll pigments depending on (severe) frost events during winter, and these parameters significantly correlated with minimum air temperatures during periods of chronic photoinhibition at mid-winter, but not at the onset of winter in response to the first frost nights. Fv/Fm and DES correlated with each other in both taxa throughout the winter. and V. Holland, W. Brüggemann.