A measuring system evaluating a Point Spread Function generated in an ultrasonographic image by scanning a spherical target was developed. The target is moved in measuring bath filled by water over scanned volume via 3D computer controlled positioning system. A video signal obtained is converted to digital form and analyzed by original software to derive various objective parameters of the imager as follows: Focal areas in both the azimuth and the elevation directions, Ultrasound scanning lines visualisation, Manufacturer preloaded TGC, Width of the scanning plane, Side lobe levels and Amplification uniformity in the azimuth direction. The method was verified by testing 18 different equipments in 282 measurements. Samples of particular measurement results in form of graphical outputs are included. Medical and physiological impacts of this approach are discussed., L. Doležal, J. Mazura, J. Tesařík, H. Kolářová, D. Korpas, S. Binder, J. Hálek., and Obsahuje bibliografii
Several recent studies bring evidence of cell death enhancement in photodynamic compound loaded cells by ultrasonic treatment. There are a number of hypotheses suggesting the mechanism of the harmful ultrasonic effect. One of them considers a process in the activation of photosensitizers by ultrasonic energy. Because the basis of the photodynamic damaging effect on cells consists in the production of reactive oxygen species (ROS), we focused our study on whether the ultrasound can increase ROS production within cancer cells. Particularly, we studied ROS formation in ultrasound pretreated breast adenocarcinoma cells during photodynamic therapy in the presence of chloroaluminum phthalocyanine disulfonate (ClAlPcS2). Production of ROS was investigated by the molecular probe CM-H2DCFDA. Our results show that ClAlPcS2 induces higher ROS production in the ultrasound pretreated cell lines at a concentration of 100 μM and light intensity of 2 mW/cm2. We also observed a dependence of ROS production on photosensitizer concentration and light dose. These results demonstrate that the photodynamic effect on breast cancer cells can be enhanced by ultrasound pretreatment., H. Kolářová, R. Bajgar, K. Tománková, E. Krestýn, L. Doležal, J. Hálek., and Obsahuje bibliografii
The effect of oral supplementation with glycosaminoglycans (GAG) and radical scavengers (vitamin E/selenium) on the regeneration of osteochondral defects was investigated in rabbits. After introduction of defined osteochondral defects in the knee joint, groups of ten animals were given a GAG/vitamin E/selenium mixture or a placebo (milk sugar) for 6 weeks. Following sacrifice, histological and histochemical analysis was performed. The amount of synovial fluid was increased in the placebo group, while the viscosity of the synovial fluid was significantly enhanced in the GAG group. The amount of sulfated GAG in the osteochondral regenerates (8.8±3.6 % vs. 6.0±5.6 %; p<0.03) was significantly higher in the GAG group. In both groups, the GAG amount in the cartilage of the operated knee was significantly higher than in the non-involved knee (p<0.05). Histological analysis of the regenerates in the GAG group was superior in comparison with the placebo group. For the first time, a biological effect following oral supplementation with GAG was demonstrated in healing of osteochondral defects in vivo. These findings support the known positive clinical results., M. Handl, E. Amler, K. Bräun, J. Holzheu, T. Trč, A. B. Imhoff, A. Lytvynets, E. Filová, H. Kolářová, A. Kotyk, V. Martínek., and Obsahuje bibliografii a bibliografické odkazy
Whole blood surface tension of 15 healthy subjects recorded by the ring method was investigated in the temperature range from 20 to 40 °C. The surface tension σ as a function of temperature t (°C) is described by an equation of linear regression as σ(t) = (-0.473 t + 70.105) × 10-3 N/m. Blood serum surface tension in the range from 20 to 40 °C is described by linear regression equation σ(t) = (-0.368 t + 66.072) × 10-3 N/m and linear regression function of blood sediment surface tension is σ(t) = (-0.423 t + 67.223) ×10-3 N/m., J. Rosina, E. Kvašňák, D. Šuta, H. Kolářová, J. Málek, L. Krajči., and Obsahuje bibliografii