Wheat (Triticum aestivum L.) genotypes K-65 (salt tolerant) and HD 2329 (salt sensitive) were grown in pots under natural conditions and irrigated with NaCl solutions of electrical conductivity (ECe) 4.0, 6.0, and 8.0 dS m-1. Control plants were irrigated without saline water. Observations were made on the top most fully expanded leaf at tillering, anthesis, and grain filling stages. The net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were reduced with the addition of NaCl. The reduction was higher in HD 2329 than in K-65. Salinity enhanced leaf to air temperature gradient (ΔT) in both the genotypes. NaCl increased the activities of superoxide dismutase (SOD) and peroxidase (POX); the percent increment was higher in K-65. The sodium and potassium contents were higher in the roots and leaves of K-65 over HD 2329. Thus at cellular level K-65 has imparted salt tolerance by manipulating PN, E, gs, and K accumulation in leaves along with overproduction of antioxidative enzyme activities (SOD and POX). and N. Sharma ... [et al.].
An experiment was conducted to study the effect of NaCl (electric conductivity of 0, 4, 8, 12, and 16 dS m-1) on growth, gas exchange parameters, water status, membrane injury, chlorophyll stability index and oxidative defense mechanisms in two cultivars (Gola and Umran) of Indian jujube (Ziziphus mauritiana). Results showed that the dry mass and leaf area reduced linearly with increasing levels of salinity. Net photosynthetic rate (PN), transpiration (E), and stomatal conductance (gs) were comparatively lower in Umran which further declined with salinity. Leaf relative water content, chlorophyll (Chl) stability and membrane stability also decreased significantly under salt stress, with higher magnitude in Umran. Superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) activities were higher in Gola whereas hydrogen peroxide (H2O2) accumulation and lipid peroxidation (MDA content) were higher in control as well as salttreated plants of Umran. The Na+ content was higher in the roots of Gola and in the leaves of Umran, resulting in high K+/Na+ ratio in Gola leaves. Thus it is suggested that salt tolerance mechanism is more efficiently operative in cultivar Gola owing to better management of growth, physiological attributes, antioxidative defense mechanism, and restricted translocation of Na+ from root to leaves along with larger accumulation of K+ in its leaves., R. Agrawal ... [et al.]., and Obsahuje bibliografii
Effect of NaCl (electrical conductivity of 0, 5, 10, 15, and 20 dS m-1) on growth, gas exchange, and ion uptake in two Ziziphus species (Z. rotundifolia and Z. nummularia) differing in salt tolerance was studied. At 30 and 45 d after first leaf initiation, the dry mass of shoot and leaves, and rates of net photosynthesis (PN) and transpiration (E) decreased significantly with increasing NaCl concentration whereas membrane injury and accumulation of proline increased. The sodium content was highest in the roots of Z. rotundifolia and in the leaves of Z. nummularia. Potassium content did not differ much in the roots but it was significantly higher in the leaves of Z. rotundifolia at 30 and 45 d of observations. Thus both these species were tolerant to salinity but at high salinity Z. rotundifolia performed better owing to its higher PN and E, restricted translocation of sodium from root to leaves, and larger accumulation of potassium in the leaves. and N. K. Gupta ... [et al.].