The central-marginal model is widely accepted in chromosomally polymorphic species of Drosophila. In fact, geographically and ecologically central populations of Drosophila show higher levels of polymorphism for paracentric inversions, whereas marginal populations tend to be monomorphic. This fact has been variously explained. Chromosomal polymorphisms in grasshoppers have also been attributed to show such geographical structuring, as in the case of the South-American grasshopper Dichroplus pratensis Bruner (Orthoptera: Acrididae). However, in three other cases involving Acrididae – Leptysma argentina Bruner, Trimerotropis pallidipennis (Burmeister) and Cornops aquaticum (Bruner), it is clear that chromosomal polymorphisms (sometimes with a wide extension over the Argentine area) do not conform to this pattern, and show instead clear correlations with environmental variables, especially minimum temperature, showing low or null frequencies of the rearrangements at one extreme of the environmental gradient and with high or fixed frequencies at the other. Furthermore, this correlation with temperature might also be true in the case of D. pratensis. These aforementioned examples emphasise the dangers of over-generalization when discussing chromosomal polymorphisms, and suggests that such polymorphisms should be considered very much in a case-specific manner in terms of the particular genetic system under study., Pablo C. Colombo., and Obsahuje seznam literatury
The New World grasshopper Cornops aquaticum (Leptysminae: Acrididae) shows a geographical pattern for three Robertsonian polymorphisms in its southernmost area of distribution in Argentina and Uruguay. The frequency and distribution of chiasmata were analysed in five Argentinian populations. This study reveals a strong redistribution of chiasmata in fusion carriers, with a reduction in proximal and increase of distal chiasma frequency in fusion bivalents and trivalents, when all three karyotypes were compared. However, when only fusion bivalents and trivalents were compared, chiasma frequency was significantly higher in the former than in the latter. This higher chiasma frequency in fusion bivalents is due to an increase in proximal chiasma frequency. It is argued that the reduction in proximal chiasma frequency (relative to unfused bivalents) in fusion bivalents may be due to interference across the centromere. Proximal chiasma reduction in trivalents may be attributed either to a physical effect of structural heterozygosity or to an adaptation to the polymorphic condition. Therefore the differences in the distribution of chiasmata in trivalents and Robertsonian bivalents have different causes.