Ligula intestinalis (Linnaeus, 1758) is a tapeworm parasite with a worldwide distribution that uses a wide variety of fish species as its second intermediate host. In the present study, we investigated the prevalence and population genetic structure of plerocercoids of L. intestinalis in five common cyprinoid species, roach Rutilus rutilus (Linnaeus), freshwater bream Abramis brama (Linnaeus), white bream Blicca bjoerkna (Linnaeus), bleak Alburnus alburnus (Linnaeus), and rudd Scardinius erythrophthalmus (Linnaeus), collected in six water bodies of the Czech Republic (Milada, Most, Medard, Jordán, Římov and Lipno). Of the six study sites, the highest frequency of parasitism was recorded in Lake Medard (15%). The overall prevalence rate among the species was as follows: roach > rudd ≥ freshwater bream > bleak > white bream. Two mitochondrial genes (cytb and COI) were used to compare the population genetic structure of parasite populations using selected samples from the five fish species. The results of the phylogenetic analysis indicated that all populations of L. intestinalis were placed in Clade A, previously identified as the most common in Europe. At a finer scale, haplotype network and PCoA analyses indicated the possible emergence of host specificity of several mtDNA haplotypes to the freshwater bream. Moreover, pairwise Fixation indices (FST) revealed a significant genetic structure between the parasite population in freshwater bream and other host species. Parasite populations in roach not only showed the highest rate of prevalence but also depicted a maximum number of shared haplotypes with populations from bleak and rudd. Our results suggest that recent ecological differentiation might have influenced tapeworm populations at a fine evolutionary scale. Thus, the differences in prevalence between fish host species in different lakes might be influenced not only by the parasite's ecology, but also by its genetic diversity.
Myxobolus pseudodispar Gorbunova, 1936 (Myxozoa) was originally described as a parasite of common roach, Rutilus rutilus (Linnaeus), with developing stages in muscles and spores disseminated in macrophage centres of different organs and tissues. Later, this parasite was described from several other cyprinids, but with relatively large intraspecific differences based on SSU rDNA gene sequences. Within our long-term study on myxozoan biodiversity, we performed a broad microscopic and molecular screening of various freshwater fish species (over 450 specimens, 36 species) from different localities. We investigated the cryptic species status of M. pseudodispar. Our analysis revealed four new unique SSU rDNA sequences of M. pseudodispar as well as an infection in new fish host species. Myxobolus pseudodispar sequence analysis showed clear phylogenetic grouping according to fish host criterion forming 13 well-recognised clades. Using 1% SSU rDNA-based genetic distance criterion, at least ten new species of Myxobolus Bütschli, 1882 may be recognised in the group of M. pseudodispar sequences. Our analysis showed the paraphyletic character of M. pseudodispar sequences and the statistical tests rejected hypothetical tree topology with the monophyletic status of the M. pseudodispar group. Myxobolus pseudodispar represents a species complex and it is a typical example of myxozoan hidden diversity phenomenon confirming myxozoans as an evolutionary very successful group of parasites with a great ability to adapt to a new hosts with subsequent speciation events.