Anemia frequently complicates chronic kidney disease (CKD). We investigated here the effect of adenine-induced CKD in rats on erythrocyte count (EC), hematocrit (PCV) and hemoglobin (Hb) concentration, as well as on the activity of L-γ-glutamyl transferase (GGT) and the concentrations of iron (Fe), transferrin (Tf), ferritin (F), total iron binding capacity (TIBC) / unsaturated iron binding capacity (UIBC) and hepcidin (Hp) in serum and erythropoietin (Epo) in renal tissue. Renal damage was assessed histopathologically, and also by measuring the serum concentrations of the uremic toxin indoxyl sulfate (IS), creatinine, and urea, and by creatinine clearance. We also assessed the influence of concomitant treatment with gum acacia (GA) on the above analytes. Adenine feeding induced CKD, accompanied by significant decreases (P<0.05) in EC, PCV, and Hb, and in the serum concentrations of Fe, Tf, TIBC, UIBC and Epo. It also increased Hp and F levels. GA significantly ameliorated these changes in rats with CKD. A general improvement in the renal status of rats with CKD after GA is shown due to its antiinflammatory and anti-oxidant actions, and reduction of the uremic toxin IS, which is known to suppress Epo production, and this may be a reason for its ameliorative actions on the indices of anemia studied., B. H. Ali, M. Al Za'Abi, A. Ramkumar, J. Yasin, A. Nemmar., and Obsahuje bibliografii
Gum acacia (GA) is used in pharmaceutical, cosmetic and food industries as an emulsifier and stabilizer, and in some countries in the traditional treatment of patients with chronic kidney disease (CKD). We have previously found that GA ameliorates adenine -induced chronic renal failure (CRF) in rats. Different brands of GA are commercially available, but their comparative efficacy against adenine-induced CKD is unknown. Here, we explored the effects of three different brands of GA (Sudanese GA, SupergumTM and GA from BDH) on some physiological, biochemical, and histological effects of adenine-induced CRF in rats. Adenine (0.75 %, w/w in feed, four weeks) reduced body weight, and increased urine output. It also induced significant increases in blood pressure, and in creatinine, urea, several inflammatory cytokines in plasma, and indices of oxidative stress, and caused histological damage in kidneys. Treatment of rats concomitantly with any of the three GA brands, significantly, and to a broadly similar extent, mitigated all the signs of CRF. The results suggested equivalent efficacy of these brands in antagonizing the CRF in this animal model. However, to enable standardization of different brands between laboratories, the use of the chemically well-characterized GA preparation (such as SupergumTM) is recommended., B. H. Ali, ... [et al.]., and Obsahuje seznam literatury
Pathogenesis of adenine-induced chronic renal failure may involve inflammatory, immunological and/or oxidant mechanisms. Gum arabic (GA) is a complex po lysaccharide that acts as an anti-oxidant which can modulate inflammatory and/or immunological processes. Therefore, we tested here the effect of GA treatment (15 % in the drinking water for 4 weeks) in plasma and urine of rats, on a novel cytokine that has been shown to be pro-inflammatory, viz, DNA-binding high-mobility group box-1 protein (HMGB1). Adenine (0.75 % in the feed, 4 weeks) significantly increased indoxyl sulphate, urea and creatinine concentrations in plasma, an d significantly decreased the creatinine clearance. GA significantly abated these effects. The concentrations of HMGB1 in urine before the start of the experiment were similar in all four groups. However, 24 h after the last treatment, adenine treatment increased significantly the concentration of HMGB1 when compared with the control. GA treatment did not affect the HMGB1 concentration in urine. Moreover, the concentration of HMGB1 in plasma obtained 24 h after the last treatment in rats treated with adenine was drastically reduced compared with the control group. This may explain its significant rise in urine. In conclusion, HMGB1 can be considered a potentially useful biomarker in adenine induced CRF and its treatment., B. H. Ali, M. Al Za'abi, A. Al Shukaili, A. Nemmar., and Obsahuje bibliografii
We have previously shown that chronic renal failure in rats induces changes in motor activity and behavior. Similar work on the possible effects of acute renal failure (ARF) induced by cisplatin (CP) is lacking. This is the subject matter of the current work. CP was injected intraperitoneally (i.p.) at a single dose of 20 mg/kg to induce a state of ARF, and three days later, its effects on motor activity, thermal and chemical noci ceptive tests, neuromuscular coordination, pentobarbitone-sleeping time, exploration activity and tw o depression models were investigated. The platinum concentration in the kidneys and brains of mice was also measured. The occurrence of CP-induced ARF was ascertained by standard physiological, biochemical and histo-pathological methods. CP induced all the classical biochemical, physiological and histopathological signs of ARF. The average renal platinum concen tration of CP-treated mice was 5.16 ppm, but there was no measurable concentration of platinum in the whole brains. CP treatment significantly decreased motor and exploration activities, and increased immobility time in depression models, suggesting a possible depression-like state. There was also a significant decrease in neuromuscular coordination in CP-treated mice. CP, given at a nephrotoxic dose, induced several adverse motor and behavioral alterations in mice. Further behavioral tests and molecular and biochemical investigations in the brains of mice with CP-induced ARF are warranted., B. H. Ali ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Adenine-induced model of chronic kidney disease (CKD) is a widely used model especially in studies testing novel nephroprotective agents. We investigated the effects of adenineinduced CKD in rats on the activities of some xenobiotic metabolizing enzymes in liver and kidneys, and on some in vivo indicators of drug metabolism (viz pentobarbitone sleeping time, and plasma concentration of theophylline 90 min post administration). CKD was induced by orally feeding adenine (0.25 % w/w) for 35 days. Adenine induced all the characteristics of CKD, which was confirmed by biochemical and histological findings. Glutathione concentration and activities of some enzymes involved in its metabolism were reduced in kidneys and livers of rats with CKD. Renal CYP450 1A1 activity was significantly inhibited by adenine, but other measured isoenzymes (1A2, 3A4 and 2E1) were not significantly affected. Adenine significantly prolonged pentobarbitone-sleeping time and increased plasma theophylline concentration 90 min post administration. Adenine also induced a moderate degree of hepatic damages as indicated histologically and by significant elevations in some plasma enzymes. The results suggest that adenine-induced CKD is associated with significant in vivo inhibitory activities on some drug-metabolizing enzymes, with most of the effect on the kidneys rather than the liver., M. Al Za’abi, A. Shalaby, P. Manoj, B. H. Ali., and Obsahuje bibliografii