Over the past 40 years, much has been published on the ultrastructure and cellular development of embryonic structures in a wide range of cestodes. However, the literature contains many discrepancies in both terminology and interpretations because of the facts that these organisms are phylogenetically diverse within their respective orders and families, the habitats that affect embryonic envelope structure are diverse, and the work has been done in various laboratories around the world. This review and synthesis was initiated by a working group of biologists from around the world convened at the Fifth International Workshop on Cestode Systematics and Phylogeny in České Budĕjovice, at the Institute of Parasitology of the Biology Centre, Academy of Sciences of the Czech Republic. It brings together the data from published work and establishes a uniform terminology and interpretation based on the data as they are presented. A consensus was reached for standardised definitions of the oncosphere, hexacanth, coracidium, embryonic envelopes, outer envelope, inner envelope, embryophore, vitelline capsule, shell, and outer coat. All of these are defined as components of the embryo or its vitellocyte-derived or uterine-derived coatings.
Spermiogenesis and the ultrastructural organisation of the spermatozoon of the trypanorhynch cestode Aporhynchus menezesi Noever, Caira, Kuchta et Desjardins, 2010 are described by means of transmission electron microscopy. Type I spermiogenesis of A. menezesi starts with the formation of a differentiation zone containing two centrioles separated by an intercentriolar body constituted by five electron-dense plates. Each centriole gives rise to a free flagellum, which grows at an angle of 90° in relation to a median cytoplasmic process. The nucleus and cortical microtubules elongate along the spermatid body. Later, both flagella rotate and fuse with the median cytoplasmic process. At the final stage of spermiogenesis, the young spermatozoon is detached from the residual cytoplasm by a narrowing of the ring of arched membranes. The mature spermatozoon is a long and filiform cell, tapered at both ends, lacking mitochondria. It is characterized by the presence of two axonemes of the 9+'1' trepaxonematan pattern, the absence of crested bodies, the presence of parallel cortical microtubules and nucleus. This pattern corresponds to the type I spermatozoon of the eucestodes. The anterior extremity of the spermatozoon is characterized by the presence of an arc-like row of up to seven parallel cortical microtubules that partially surrounds the first axoneme. These anterior cortical microtubules are thicker than the posterior microtubules and, consequently, the sperm cell of A. menezesi exhibits two types of cortical microtubules. Another interesting aspect is the presence of α-glycogen rosettes. This spermatological pattern is similar to that observed in the spathebothriidean and diphyllobothriidean cestodes.