Spermatological characters of the liver fluke Mediogonimus jourdanei Mas-Coma et Rocamora, 1978 were studied by means of transmission and scanning electron microscopy. Spermiogenesis begins with the formation of the differentiation zone containing two centrioles associated with striated rootlets and an intercentriolar body. These two centrioles originate two free flagella that undergo a 90° rotation before fusing with the median cytoplasmic process. Both nuclear and mitochondrial migrations toward the median cytoplasmic process occur before the proximodistal fusion of flagella. Finally, the constriction of the ring of arched membranes gives rise to the young spermatozoon. The mature sperm of M. jourdanei measures about 260 µm and presents two axonemes of different lengths with the typical pattern of the Trepaxonemata, two bundles of parallel cortical microtubules, one mitochondrion, a nucleus and granules of glycogen. An analysis of all the microphalloidean species studied to date emphasised some differences in certain characters found in Maritrema linguilla Jägerskiöld, 1908 and Ganeo tigrinum Mehra et Negi, 1928 in comparison to those in the remaining microphalloideans. The presence and variability of such ultrastructural characters according to family, superfamily or order have led several authors to propose their use in the analysis of trematode relationships and phylogeny. Therefore, apart from producing new data on the family Prosthogonimidae, the present study also compares the spermatological organization of M. jourdanei with other available ultrastructural studies focusing on the Microphalloidea.
Spermiogenesis and the ultrastructural organisation of the spermatozoon of the trypanorhynch cestode Aporhynchus menezesi Noever, Caira, Kuchta et Desjardins, 2010 are described by means of transmission electron microscopy. Type I spermiogenesis of A. menezesi starts with the formation of a differentiation zone containing two centrioles separated by an intercentriolar body constituted by five electron-dense plates. Each centriole gives rise to a free flagellum, which grows at an angle of 90° in relation to a median cytoplasmic process. The nucleus and cortical microtubules elongate along the spermatid body. Later, both flagella rotate and fuse with the median cytoplasmic process. At the final stage of spermiogenesis, the young spermatozoon is detached from the residual cytoplasm by a narrowing of the ring of arched membranes. The mature spermatozoon is a long and filiform cell, tapered at both ends, lacking mitochondria. It is characterized by the presence of two axonemes of the 9+'1' trepaxonematan pattern, the absence of crested bodies, the presence of parallel cortical microtubules and nucleus. This pattern corresponds to the type I spermatozoon of the eucestodes. The anterior extremity of the spermatozoon is characterized by the presence of an arc-like row of up to seven parallel cortical microtubules that partially surrounds the first axoneme. These anterior cortical microtubules are thicker than the posterior microtubules and, consequently, the sperm cell of A. menezesi exhibits two types of cortical microtubules. Another interesting aspect is the presence of α-glycogen rosettes. This spermatological pattern is similar to that observed in the spathebothriidean and diphyllobothriidean cestodes.