The photosynthetic response of 8 cotton (Gossypium hirsutum L.) genotypes to changing irradiance was investigated under field conditions during the 1998 through 2000 growing seasons. Equations developed to describe the response of net photosynthetic rate (PN) to photosynthetic photon flux density (PPFD) demonstrated that, across all irradiances, the two okra leaf-type genotypes photosynthesized at a greater rate per unit leaf area than all of the six normal leaf-type genotypes. This superior photosynthetic performance of the okra leaf-type genotypes can be partially explained by their 13 % greater leaf chlorophyll content relative to that of the normal leaf-type genotypes. The 37 % reduction in leaf size brought upon by the okra leaf trait may have concentrated the amount of photosynthetic machinery per unit leaf area. Nevertheless, the lack of sufficient canopy leaf surface area suppressed the potential yield development that could accompany the higher PN per unit leaf area.
The study of leaf vascular systems is important in order to understand the fluid dynamics of water movement in leaves. Recent studies have shown how these systems can be involved in the performance of photosynthesis, which is linked to the density of the vascular network per unit of leaf area. The aim of the present study was to highlight the correlation between a leaf vein density (VD) and net photosynthetic rate (PN), which was undertaken using a digital camera, a stereoscopic microscope, and a light source. The proposed hypothesis was tested, for the first time, on the leaves of two cultivars of Vitis vinifera (L.). A significant difference was found between the VD of mature leaves of the two cultivars. VD was also significantly correlated with the maximum leaf PN. These findings support the hypothesis that the vascular system of grape leaves can be correlated with leaf photosynthesis performance., M. Pagano, P. Corona, P. Storchi., and Obsahuje bibliografii