Anticipating warming related to climate change, commercial mango plantations in China have been shifting from lower to higher elevations. Such a practice may expose mangoes to climatic conditions that could affect photosynthesis. Photosynthesis research on mango has previously examined mature plantations but exploring adequate functions before the time of fruit production is necessary for later crop success. Therefore, we established two main commercial mango cultivars, Tainong No. 1 and Jinhuang, at 450 m and 1,050 m and examined their photosynthetic performance. Our results showed that photosynthetic capacity parameters, including maximum photosynthetic rate, apparent quantum yield, maximum carboxylation rate, and photosynthetic electron transport rate, were significantly different between cultivars due to elevation and positively correlated with leaf nitrogen per area. Moreover, the seasonal gas exchange of the two cultivars showed variations due to elevation, particularly during the warmer seasons. Therefore, elevation affects the photosynthetic performance of these mango cultivars.
The source-sink relationship is one of major determinants of plant performance. The influence of reproductive sink demand on light-saturated photosynthesis (Pmax), dark respiration (RD), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), contents of soluble sugar (SSC), nitrogen, carbon, and photosynthetic pigments was examined in blueberry (Vaccinium corymbosum L. cv. ‘Brigitta’) during the final stage of rapid fruit growth. Measurements were performed three times per day on developed, sun-exposed leaves of girdled shoots with 0.1, 1, and 10 fruit per leaf (0.1F:L, 1F:L, and 10F:L, respectively) and nongirdled shoots bearing one fruit per leaf (NG). Girdling and lower fruit amount induced lower Pmax, gs, N, and total chlorophyll (Chl) and higher WUEi, SSC, RD, Chl a/b ratio and carotenoids-to-chlorophylls ratio (Car/Chl) for the 1F:L and 0.1F:L treatments. The impact of girdling was counterbalanced by 10F:L, with NG and 10F:L having similar values. Variables other than Pmax, RD, gs, WUEi, and SSC were unaffected throughout the course of the day. Pmax and gs decreased during the course of the day, but gs decreased more than Pmax in the afternoon, while WUEi was increasing in almost all treatments. SSC increased from the morning until afternoon, whereas RD peaked at noon regardless of the treatment. Generally, Pmax was closely and negatively correlated to SSC, indicating that sugar-sensing mechanisms played an important role in regulation of blueberry leaf photosynthesis. With respect to treatments, Pmax and N content were positively related, while RD was not associated to substrate availability. The enhanced Car/Chl ratio showed a higher photoprotection under the lower sink demand. Changes in the source-sink relationship in 'Brigitta' blueberry led to a rearrangement of physiological and structural leaf traits which allowed adjusting the daily balance between carbon assimilation and absorbed light energy., E. Jorquera-Fontena, M. Alberdi, M. Reyes-Díaz, N. Franck., and Obsahuje bibliografii