Lockean theories of personal identity maintain that we per-sist by virtue of psychological continuity, and most Lockeans say that we are material things coinciding with animals. Some animalists ar-gue that if persons and animals coincide, they must have the same intrinsic properties, including thinking, and, as a result, there are ‘too many thinkers’ associated with each human being. Further, Lockeans have trouble explaining how animals and persons can be numerically different and have different persistence conditions. For these reasons, the idea of a person being numerically distinct but coincident with an animal is rejected and animalists conclude that we simply are animals. However, animalists face a similar problem when confronted with the vagueness of composition. Animals are entities with vague boundaries. According to the linguistic account of vagueness, the vagueness of a term consists in there being a number of candidates for the denotatum of the vague term. It seems to imply that where we see an animal, there are, in fact, a lot of distinct but overlapping entities with basically the same intrinsic properties, including think-ing. As a result, the animalist must also posit ‘too many thinkers’ where we thought there was only one. This seems to imply that the animalist cannot accept the linguistic account of vagueness. In this paper the author argues that the animalist can accept the linguistic account of vagueness and retain her argument against Lockeanism.
The measurement of information emitted by sources with uncertainty of random type is known and investigated in many works. This paper aims to contribute to analogous treatment of information connected with messages from other uncertain sources, influenced by not only random but also some other types of uncertainty, namely with imprecision and vagueness. The main sections are devoted to the characterization and quantitative representation of such uncertainties and measures of information produced by sources of the considered type.
We cannot definitely determine precise boundaries of application of vague terms like ''tall''. Since it is only a height of a person that determines whether that person is tall or not, we can count ''tall'' as an example of a linear vague term. That means that all objects in a range of significance of ''tall'' can be linearly ordered. Linear vague terms can be used to formulate three basic versions of the sorites paradox – the conditional sorites, the mathematical induction sorites, and the line-drawing sorites. In this paper I would like to explore a possibility of formulating sorites paradoxes with so called multi-dimensional and combinatory vague terms – terms for which it is impossible to create a linear ordering of all objects in their range of significance. Therefore, I will show which adjustments must be made and which simplifications we must accede to in order to formulate any version of the sorites paradox with multi-dimensional or combinatory vague terms. I will also show that only the conditional version of the sorites paradox can be construed with all three kinds of vague terms., Nemůžeme rozhodně určit přesné hranice aplikace neurčitých termínů jako ,,vysoký''. Jelikož je to pouze výška osoby, která určuje, zda je tato osoba vysoká nebo ne, můžeme jako příklad lineárního neurčitého termínu počítat ,,vysoký''. To znamená, že všechny objekty v rozsahu významu ,,vysokého'' mohou být lineárně uspořádány. Lineární neurčité termíny mohou být použity pro formulaci tří základních verzí paradoxů soritů - podmíněných soritů, matematických indukčních soritů a soritů pro kreslení čar. V této práci bych chtěl prozkoumat možnost formulování paradoxů soritů s takzvanými vícerozměrnými a kombinatorickými neurčitými termíny - termíny, pro které není možné vytvořit lineární uspořádání všech objektů v rozsahu jejich významu. Proto, Ukážu, jaké úpravy je třeba provést a jaká zjednodušení musíme přistoupit, abychom mohli formulovat jakoukoli verzi paradoxů soritů s vícerozměrnými nebo kombinatorickými neurčitými termíny. Ukážu také, že pouze podmíněnou verzi paradoxu soritů lze chápat se všemi třemi druhy neurčitých termínů., and Jan Štěpánek