In the marine ecological system, the prime role of water management and durability of an ecosystem is being played by the vegetation patches. The vegetation patches in open channels can significantly affect the flow velocity, discharge capacity and hinder energy fluxes, which ultimately helps in controlling catastrophic floods. In this study, the numerical simulation for turbulent flow properties, i.e. velocity distribution, Reynolds stresses and Turbulent Intensities (TI) near the circular vegetation patches with progressively increasing density, were performed using the computational fluid dynamics (CFD) code ANSYS FLUENT. For examination of the turbulent flow features in the presence of circular patches with variable densities, Reynolds averaged Navier-Stokes equations, and Reynolds stress model (RSM) were employed. The numerical investigation was performed in the presence of in-line emergent and submerged patches having variable vegetation density in the downstream direction. Two of the cases were investigated with three circular patches having a clear gap to patch diameter ratio of La/D = 1 (where La is the clear spacing between the vegetation patches and D is the diameter of the circular patch), and the other two cases were analyzed with two patches having a clear gap ratio of La/D = 3. The case with a clear gap ratio (La/D = 3) showed 10.6% and 153% inflation in the magnitude of longitudinal velocity at the downstream of the sparse patch (aD = 0.8) and upstream of the dense patch (aD = 3.54), respectively (where aD is the flow blockage, in which “a” represents the patch frontal area and “D” represents the patch diameter). The velocity was reduced to 94% for emergent and 99% for submerged vegetation due to successive increase in vegetation density made by introducing a middle patch which reduced the clear gap ratio (La/D = 1). For La/D = 1, the longitudinal velocities at depth z = 15cm were increased by 319% than at depth z = 6cm at the downstream of the dense patch (aD = 3.54). Whereas it was observed to 365% higher in the case of La/D = 3. The magnitude of turbulent characteristics was observed 36% higher for submerged vegetation cases having a clear gap ratio of La/D = 1. The successive increase in the patch density reduced the Reynolds stresses, turbulent kinetic energy and turbulent intensities significantly within the gap region. The major reduction in the flow velocities and turbulent properties in the gaps provides a stable environment for aquatic ecosystems nourishment and fosters sediment deposition, and supports further vegetation growth.
The most frequently used instrument for measuring velocity distribution in the cross-section of small rivers is the propeller-type current meter. Output of measuring using this instrument is point data of a tiny bulk. Spatial interpolation of measured data should produce a dense velocity profile, which is not available from the measuring itself. This paper describes the preparation of interpolation models. Measuring campaign was realized to obtain operational data. It took place on real streams with different velocity distributions. Seven data sets were obtained from four cross-sections varying in the number of measuring points, 24-82. Following methods of interpolation of the data were used in the same context: methods of geometric interpolation arithmetic mean and inverse distance weighted, the method of fitting the trend to the data thin-plate spline and the geostatistical method of ordinary kriging. Calibration of interpolation models carried out in the computational program Scilab is presented. The models were tested with error criteria by cross-validation. Ordinary kriging was proposed to be the most suitable interpolation method, giving the lowest values of used error criteria among the rest of the interpolation methods.
By an analysis of the Brock’s model tests (Brock, 1969) conditions for forming of roll-waves are determined together with experimental equations of their parameters in relation to the channel inflow wave (Kunštátský, Maleňák, Pejchal, 1967; Kybast, 2002), aeration of flow (Douma, 1943; Haindl, Lískovec, 1973), channel slope and roughness along the whole range of the water flows. Calculations of lower and upper flow roll-waves discharge, depths, velocities, time periods, wave distances and volumes are presented. and Rozborem Brockových modelových zkoušek (Brock, 1969) jsou určeny podmínky tvoření translačních vln a experimentální rovnice jejich parametrů v souvislosti s rázovou vlnou napouštění koryta (Kunštátský, Maleňák, Pejchal, 1967; Kybast, 2002), s provzdušněním proudu (Douma, 1943; Haindl, Lískovec, 1973), sklonem koryta a s jeho drsností v celém rozsahu tohoto proudění vody. Předložen je výpočet dolního proudu a horního proudu s translačními vlnami, jejich průtoků, hloubek a výšek, rychlostí, časových period, vzdáleností a objemů vln.
Turbulence of flow over mobile bedforms in natural open channels is not yet clearly understood. An attempt is made in this paper to determine the effect of naturally formed mobile bedforms on velocities, turbulent intensities and turbulent stresses. Instantaneous velocities are measured using a two-dimensional particle image velocimetry (PIV) to evaluate the turbulence structure of free surface flow over a fixed (immobile) bed, a weakly mobile bed and a temporally varying mobile bed with different stages of bedform development. This paper documents the vertical distribution of velocity, turbulence intensities, Reynolds shear stress and higher-order moments including skewness and turbulent diffusion factors. Analysis of the velocity distributions shows a substantial decrease of velocity near the bed with increasing bedform mobility due to increased friction. A modified logarithmic law with a reduced von Kármán constant and increased velocity shift is proposed for the case of the mobile bedforms. A significant increase in the Reynolds shear stress is observed in the mobile bedforms experiments accompanied by changes over the entire flow depth compared to an immobile bed. The skewness factor distribution was found to be different in the case of the flow over the mobile bedforms. All higher-order turbulence descriptors are found to be significantly affected by the formation of temporally varying and non-equilibrium mobile bedforms. Quadrant analysis indicates that sweep and outward events are found to be dominant in strongly mobile bedforms and govern the bedform mobility.