In present paper we assess the climate change impact on mean runoff between the periods 1961-1990 (control period) and 2070-2099 (scenario period) in the Czech Republic. Hydrological balance is modelled with a conceptual hydrological model BILAN at 250 catchments of different sizes and climatic conditions. Climate change scenarios are derived using simple delta approach, i.e. observed series of precipitation, temperature and relative air humidity are perturbed in order to give the same changes between the control and scenario period as in the ensemble of 15 transient regional climate model (RCM) simulations. The parameters of the hydrological model are for each catchment estimated using observed data. These parameters are subsequently used to derive discharge series under climate change conditions for each RCM simulation. Although the differences in the absolute values of the changes in runoff are considerable, robust patterns of changes can be identified. The majority of the scenarios project an increase in winter runoff in the northern part of the Czech Republic, especially at catchments with high elevation. The scenarios also agree on a decrease in spring and summer runoff in most of the catchments. and V článku předkládáme výsledky modelování změn hydrologického režimu v důsledku změn klimatu mezi časovými obdobími 1961-1990 a 2070-2099 podle souboru patnácti regionálních klimatických modelů pro 250 povodí v České republice. Hydrologická bilance byla modelována pomocí konceptuálního hydrologického modelu BILAN. Časové řady ovlivněné změnou klimatu byly získány jednoduchou přírůstkovou metodou, tj. pozorované časové řady srážek, teplot a vlhkostí vzduchu (vstupy do modelu BILAN) byly opraveny pro každou simulaci pomocí přírůstkových faktorů tak, aby měsíční změny těchto veličin byly stejné jako podle uvažované simulace klimatického modelu. Hydrologický model je nakalibrován s využitím pozorovaných dat, identifikované parametry jsou následně využity pro simulaci hydrologické bilance pro řady ovlivněné klimatickou změnou. Základní podstata možných změn hydrologické bilance na území České republiky vyplývá z projekcí srážek a teplot pro Evropu, tj. postupné zvyšování teplot během celého roku a pokles letních, růst zimních a stagnace ročních srážek. V období od začátku podzimu do začátku léta dochází k růstu srážek, jenž je doprovázen řádově stejným růstem územního výparu způsobeným růstem teplot. V letním období dochází k poklesu srážek a v důsledku úbytku zásob vody v povodí nemůže docházet k výraznému zvyšování územního výparu. Důležitým faktorem ovlivňující změny odtoku je posun doby tání v důsledku vyšší teploty přibližně z dubna na leden-únor. Změny odtoku v období leden-květen jsou tedy dominantně určeny právě odlišnou dynamikou sněhové zásoby, změny v letním období zejména úbytkem srážek. Výsledné odhady změn odtoku jsou zatíženy značnou nejistotou, nicméně lze identifikovat robustní jevy společné pro řadu simulací. Jak ukazují výsledky, na většině modelovaných povodí je pokles odtoků v období od dubna do října společný valné většině modelů. Na druhé straně, růst odtoku v zimních měsících je značně nejistý. S tím souvisí i nejistota spojená se změnami roční bilance odtoků.
The most frequently used instrument for measuring velocity distribution in the cross-section of small rivers is the propeller-type current meter. Output of measuring using this instrument is point data of a tiny bulk. Spatial interpolation of measured data should produce a dense velocity profile, which is not available from the measuring itself. This paper describes the preparation of interpolation models. Measuring campaign was realized to obtain operational data. It took place on real streams with different velocity distributions. Seven data sets were obtained from four cross-sections varying in the number of measuring points, 24-82. Following methods of interpolation of the data were used in the same context: methods of geometric interpolation arithmetic mean and inverse distance weighted, the method of fitting the trend to the data thin-plate spline and the geostatistical method of ordinary kriging. Calibration of interpolation models carried out in the computational program Scilab is presented. The models were tested with error criteria by cross-validation. Ordinary kriging was proposed to be the most suitable interpolation method, giving the lowest values of used error criteria among the rest of the interpolation methods.
The layering of the soil profile can influence the accumulation of infiltrated water and the way in which subsurface runoff is formed. This paper examines a mountain podzol characterized by clearly developed soil horizons. After these horizons had been identified, distinct soil layers were defined (the eluvial horizon, the spodic horizon (undifferentiated), and weathered bedrock). Saturated hydraulic conductivity (Ks), particle size distribution and bulk density were measured in these layers. A visualization of the distribution of infiltrated water in the podzolic profile was performed using a dye tracer experiment. The accumulation of dyed water and a distinct lateral flow were detected in the eluvial layer. Only limited entry of water into the spodic layer was observed. These effects were caused by changes in soil hydraulic properties (SHP) among the investigated layers. For the spodic horizons, the measured Ks value (crucial SHP) was significantly lower than the Ks values for the other tested horizons. The probable reason for the lower Ks was an accumulation of fine particles and various substances in the spodic horizons, and corresponding changes in the porous system. The observed effects of layering indicate that water can be accumulated and subsurface runoff can be formed over the spodic layer during intensive rain or snow melting.