A comparison between maximum quantum yield of PSII photochemistry (Fv/Fm) and chlorophyll fluorescence decrease ratio (Rfd) for low and high temperature resistance was assessed in a seasonal study of the acclimation in Pterocephalus lasiospermus. Analyzing the regression adjustment of both parameters and the lethal temperatures (LT50), Rfd resulted in being a more sensitive indicator for low and high temperature treatments, since the thermic resistance estimated with Rfd parameter was never higher than those estimated with Fv/Fm. Furthermore, the use of Fv/Fm led to an overestimation of the acclimation phenomena, with 6ºC of a maximum difference between both parameters. Using Rfd as the indicator parameter, P. lasiospermus acclimated to low temperatures but it kept on being a sensitive species (the lowest LT50 values only achieved -9.9 ± 0.3ºC). However, no heat acclimation was observed (LT50 around 43.5ºC). Thus, according to Rfd evaluation of the thermic threshold, this species could be in risk of damage at low temperatures in this alpine ecosystem., A. V. Perera-Castro, P. Brito, A. M. González-Rodríguez., and Obsahuje bibliografii
Chlorophyll (Chl) fluorescence is a subtle reflection of primary reactions of photosynthesis. Intricate relationships between fluorescence kinetics and photosynthesis help our understanding of photosynthetic biophysical processes. Chl fluorescence technique is useful as a non-invasive tool in eco-physiological studies, and has extensively been used in assessing plant responses to environmental stress. The review gives a summary of some Chl fluorescence parameters currently used in studies of stress physiology of selected cereal crops, namely water stress, heat stress, salt stress, and chilling stress.
a1_The effect of a wide range of temperatures (-15 and 60°C) in darkness or under strong irradiation [1,600 μmol(photon) m-2 s-1] on quantum yield of photosystem II photochemistry and xanthophyll cycle pigments was investigated in a tropical fruit crop (Musa sp.) and a temperate spring flowering plant (Allium ursinum L.). In darkness within the nonlethal thermal window of A. ursinum (from -6.7 to 47.7°C; 54.5 K) and of Musa sp. (from -2.2°C to 49.5°C; 51.7 K) maximal quantum yield of PSII photochemistry (Fv/Fm) was fairly unaffected by temperature over more than 40 K. At low temperature Fv/Fm started to drop with ice nucleation but significantly only with initial frost injuries (temperature at 10% frost damage; LT10). The critical high temperature threshold for PSII (Tc) was 43.8°C in A. ursinum and 44.7°C in Musa sp. Under strong irradiation, exposure to temperatures exceeding the growth ones but being still nonlethal caused photoinhibition in both species. Severity of photoinhibition increased with increasing distance to the growth temperature range. ΔF/Fm′ revealed distinctly different optimum temperature ranges: 27-36°C for Musa sp. and 18-27°C for A. ursinum exceeding maximum growth temperature by 2-7 K. In both species only at temperatures > 30°C zeaxanthin increased and violaxanthin decreased significantly. At nonlethal low temperature relative amounts of xanthophylls remained unchanged. At temperatures > 40°C β-carotene increased significantly in both species. In Musa sp. lutein and neoxanthin were significantly increased at 45°C, in A. ursinum lutein remained unchanged, neoxanthin levels decreased in the supraoptimal temperature range. In darkness, Fv/Fm was highly temperature-insensitive in both species., a2_Under strong irradiation, whenever growth temperature was exceeded, photoinhibition occurred with xanthophylls being changed only under supraoptimal temperature conditions as an antiradical defence mechanism., A. Dongsansuk, C. Lütz, and G. Neuner., and Obsahuje bibliografii
Stressful environments such as salinity, drought, and high temperature (heat) cause alterations in a wide range of physiological, biochemical, and molecular processes in plants. Photosynthesis, the most fundamental and intricate physiological process in all green plants, is also severely affected in all its phases by such stresses. Since the mechanism of photosynthesis involves various components, including photosynthetic pigments and photosystems, the electron transport system, and CO2 reduction pathways, any damage at any level caused by a stress may reduce the overall photosynthetic capacity of a green plant. Details of the stress-induced damage and adverse effects on different types of pigments, photosystems, components of electron transport system, alterations in the activities of enzymes involved in the mechanism of photosynthesis, and changes in various gas exchange characteristics, particularly of agricultural plants, are considered in this review. In addition, we discussed also progress made during the last two decades in producing transgenic lines of different C3 crops with enhanced photosynthetic performance, which was reached by either the overexpression of C3 enzymes or transcription factors or the incorporation of genes encoding C4 enzymes into C3 plants. We also discussed critically a current, worldwide effort to identify signaling components, such as transcription factors and protein kinases, particularly mitogen-activated protein kinases (MAPKs) involved in stress adaptation in agricultural plants., M. Ashraf, P. J. C. Harris., and Obsahuje bibliografii
The response of effective quantum yield of photosystem 2 (ΔF/Fm') to temperature was investigated under field conditions (1 950 m a.s.l.) in three alpine plant species with contrasting leaf temperature climates. The in situ temperature response did not follow an optimum curve but under saturating irradiances [PPFD >800 µìmol(photon) m-2s-1] highest ΔF/Fm' occurred at leaf temperatures below 10°C. This was comparable to the temperature response of antarctic vascular plants. Leaf temperatures between 0 and 15°C were the most frequently (41 to 56%) experienced by the investigated species. At these temperatures, ΔF/Fm' was highest in all species (data from all irradiation classes included) but the species differed in the temperature at which ΔF/Fm' dropped below 50% (Soldanella pusilla >20°C, Loiseleuria procumbens >25°C, and Saxifraga paniculata >40°C). The in situ response of ΔF/Fm' showed significantly higher ΔF/Fm' values at saturating PPFD for the species growing in full sunlight (S. paniculata and L. procumbens) than for S. pusilla growing under more moderate PPFD. The effect of increasing PPFD on ΔF/Fm', for a given leaf temperature, was most pronounced in S. pusilla. Despite the broad diurnal leaf temperature amplitude of alpine environments, only in S. paniculata did saturating PPFD occur over a broad range of leaf temperatures (43 K). In the other two species it was half of that (around 20 K). This indicates that the setting of environmental scenarios (leaf temperature×PPFD) in laboratory experiments often likely exceeds the actual environmental demand in the field. and V. Braun, G. Neuner.