The study investigated whether specific changes in phase synchrony in the beta 2 frequency band of EEG (25-35 Hz) occurred during a recognition task. The level of synchrony was examined between one hundred and eighty loci in the frontal and temporal lobes of eight epileptic patients with intracerebral electrodes; the EEG records were obtained during a visual oddball task. In each pair of records, the correlation curves were created from the sequence of correlation coefficients calculated. These curves consisted of irregular oscillations between the maximal and minimal r-values. Transient highly synchronized activity was observed during the whole time course of the experiment in all record pairs investigated and a significant relationship was found between the number of such episodes and the mean correlation coefficient (Spearman R 0.84; N 3240; p<0.001). On averaged curves, which were calculated using stimulus onsets as the trigger of averaging, a significant increase of the mean correlation coefficient in the post-stimulus epoch was found (p<0.01 after both target and non-target stimuli; t-test for dependent samples). As the cognitive demand significantly increases after stimulus presentation, the results are considered to be the first evidence from intracranial recording of increased synchronization in the beta 2 frequency band related to the cognitive activity., M. Kukleta ... [et al.]., and Obsahuje seznam literatury
Spatiotemporal dynamics of event-related potentials (ERP) evoked by non-target stimuli in a visual oddball experiment and the presence of coherent oscillations in beta 2 frequency band of decomposed EEG records from peristimulus period were investigated by means of intracranial electrodes in humans. Twenty-one patients with medically intractable epilepsy participated in the study. The EEG signal was recorded using platinum electrodes implanted in several cortical and subcortical sites. Averaged 2 s EEG records were analyzed. Task-specific EEG changes were found in each patient, ERPs were derived from 92 electrodes used (96 % of possible cases). In the majority of analysed cases, ERPs were composed of several distinct components, and their duration was mostly longer than 1 s. The mean onset of the first ERP component was 158±132 ms after the stimulus (median 112 ms, minimum value 42 ms, maximum value 755 ms), and large variability of these onset times was found in all the investigated structures. Possible coherence between neural activities of remote brain sites was investigated by calculating running correlations between pairs of decomposed EEG records (alpha, beta 1, beta 2 frequency bands were used, total number of correlated pairs was 662 in each frequency band). The record pairs exhibiting highly correlated time segments represented 23 % of all the investigated pairs in alpha band, 7 % in beta 1 band, and 59 % in beta 2 band. In investigated 2 s record windows, such segments were distributed evenly, i.e. they were also found before the stimulus onset. In conclusion, the results have implicated the idea that a lot of recorded ERPs was more or less by-products of chance in spreading a signal within the neuronal network, and that their functional relevance was somewhat linked with the phenomenon of activity synchronization., M. Kukleta ... [et al.]., and Obsahuje seznam literatury
This paper presents advanced methodology for the analysis of the electroencephalographic activity (EEG) of the brain aimed to monitor the cognitive states of an operator. The methodology of EEG analysis is based on two main approaches: linear methods based on Fourier transform, Linear Stochastic Models, Multi-covariance analysis, and nonlinear methods based on estimation of state space attractor, state space dimension, D2 dimension and the Largest Lyapunov Exponent (LLE). The correct application of these methods is supported by the study of stability, dynamics and space distribution of EEG signal. The uncertainty of adopting a new methodology, such as presented chaos theory, for EEG signal analysis is minimized by the adequate setup of experiments and by evaluation of results against well adopted power spectral estimates calculated by Fourier transform. For better understanding of the underlying processes behind EEG, the basic mental states such as relaxation, single and complex number count, and Raven test are analyzed and compared with the vigilance states. The averaged behavior of the computed markers of the EEG signal is studied with respect to a reaction time scale by the evaluation of a set of experiments. Because of this complex approach, the presented methodology is able to track the ongoing changes in EEG activity during the process of falling asleep. The automatic detection of vigilance changes is a consequent step to this work. Usability of such device in various fields of everyday life is of the high importance.
The saccadic eye movement related potentials (SEMRPs) enable to study brain mechanisms of the sensorimotor integration. SEMRPs provide insight into various cognitive mechanisms related to planning, programming, generation and execution of the saccadic eye movements. SEMRPs can be used to investigate pathophysiological mechanisms of several disorders of the central nervous system. Here we shortly summarize basic findings concerning the significance of SEMRP components, their relationship to the functional brain asymmetry and visual attention level as well as changes related to certain neuropsychological disorders., F. Jagla, M. Jergelová, I. Riečanský., and Obsahuje bibliografii a bibliografické odkazy
The purpose of this study was to investigate the possible relationship between Toxoplasma gondii (Nicolle et Manceaux, 1908) and stuttering. We investigated the seropositivity rate for anti-T. gondii IgG and antibodies by enzyme-linked immunosorbent assay (ELISA) in stuttering children to ascertain a possible relationship between T. gondii infection and stuttering. We selected 65 stuttering children and 65 control children (non-stutterers) to investigate the seropositivity rate of anti-T. gondii antibodies by ELISA. Cranial magnetic resonance imaging (MRI) and scalp electroencephalography (EEG) were also performed in stuttering children. The seropositivity rate of anti-T. gondii IgG antibodies among stuttering children (28%) was significantly higher than in control group (5%; p = 0.001). No abnormality was detected in cranial MRI's of stutttering children and their EEG recordings were also normal. There was no significant difference in seropositivity rate regarding age, genders and residence area. The association between seroprevalence of infection with T. gondii and stuttering may be due to hyperdopaminergic state in brains of patients who are T. gondii-seropositive. Thus, there might be a causal relationship between toxoplasmosis and stuttering., Tuncay Çelik, Cem Gökçen, Özgür Aytaş, Aysima Özçelik, Mustafa Çelik, Nurdan Çoban., and Obsahuje bibliografii