In the present study, experiments were conducted in a large-scale flume to investigate the issue of local scour around side-by-side bridge piers under both ice-covered and open flow conditions. Three non-uniform sediments were used in this experimental study. Analysis of armour layer in the scour holes around bridge piers was performed to inspect the grain size distribution curves and to study the impact of armour layer on scour depth. Assessments of grain size of deposition ridges at the downstream side of bridge piers have been conducted. Based on data collected in 108 experiments, the independent variables associated with maximum scour depth were assessed. Results indicate that the densimetric Froude number was the most influential parameter on the maximum scour depth. With the increase in grain size of the armour layer, ice cover roughness and the densimetric Froude number, the maximum scour depth around bridge piers increases correspondingly. Equations have been developed to determine the maximum scour depth around bridge piers under both open flow and ice covered conditions.
Ice jams in northern rivers during winter period significantly change the flow conditions due to the extra boundary of the flow. Moreover, with the presence of bridge piers in the channel, the flow conditions can be further complicated. Ice cover often starts from the front of bridge piers, extending to the upstream. With the accumulation of ice cover, ice jam may happen during early spring, which results in the notorious ice jam flooding. In the present study, the concentration of flowing ice around bridge piers has been evaluated based on experiments carried out in laboratory. The critical condition for the initiation of ice cover around bridge piers has been investigated. An equation for the critical floe concentration was developed. The equation has been validated by experimental data from previous studies. The proposed model can be used for the prediction of formation of ice cover in front of a bridge pier under certain conditions.
The local scour around bridge piers influences their stabilities and plays a key role in the bridge failures. The estimation of the maximum possible scour depth around bridge piers is an important step in the design of the bridge pier foundations. In this study, the temporal evolution of local scour depths as well as the equilibrium scour depths were analyzed.
The experiments were carried out in a rectangular flume by using uniform sediment with median diameter of 3.5 mm and geometric standard deviation of 1.4. The diameters of the tested circular bridge piers were 40 mm, 80 mm, 150 mm and 200 mm. The flow and scour depths were determined by ultrasonic sensors. The experiments were realized in clear water conditions with various constant flow rates.
The experimental findings were compared with those calculated from some empirical equations existing in the literature. A new empirical relation involving the flow intensity, the relative water depth and the dimensionless time is also introduced. The advantage of this proposed relation is that the only parameter requiring the calculation is the critical velocity, other parameters being known geometric and hydraulic parameters. The performance of this relation was tested by using experimental data available in the literature, and a satisfactory compatibility was revealed between the experimental and numerical results.
The ice jam in a river can significantly change the flow field in winter and early spring. The presence of bridge piers further complicates the hydraulic process by interacting between the ice jam and bridge piers. Using the data collected from experiments in a laboratory flume, the evolution of an ice jam around bridge piers having three different diameters has been investigated in this study. Compared to results without-pier, it was found that the formation of an ice jam in the downstream of bridge pier is faster than that in the upstream. The thickness distribution of the ice jam shows clearly different characteristics in front and behind of bridge piers at different stages of the ice jam.
Recent studies have shown that the presence of ice cover leads to an intensified local scour pattern in the vicinity of bridge piers. To investigate the local scour pattern in the vicinity of bridge pier under ice-covered flow condition comparing to that under open channel flow condition, it is essential to examine flow field around bridge piers under different flow conditions. In order to do so, after creation of smooth and rough ice covers, three-dimensional timeaveraged velocity components around four pairs of bridge piers were measured using an Acoustic Doppler velocimetry (ADV). The ADV measured velocity profiles describe the difference between the velocity distributions in the vicinity of bridge piers under different covered conditions. Experimental results show that the vertical velocity distribution which represents the strength of downfall velocity is the greatest under rough covered condition which leads to a greater scour depth. Besides, results show that the turbulent intensity increases with pier size regardless of flow cover, which implies that larger scour depth occurs around piers with larger diameter.