Experiments were performed in C57BL/6J male mice to determine the effects of acetylcholinesterase (AChE) inhibitor pyridostigmine bromide (PB) and stress on cardiovascular function, structure, and apoptosis. Mice were studied for seven days under the following conditions: Controls (osmotic minipump with saline), PB (10 mg/kg/day, minipumps), shaker stress (45 stressors/day, minipump with saline) and PB+Stress combination. AChE activity was significantly reduced in all PB-treated mice. PB caused no changes in 24-h mean arterial pressure (MAP) or heart rate (HR). Stress
increased 24-h MAP on day 1 and 24-h HR on day 7 in both Stress and PB+Stress groups. A significant reduction in the aortic wall thickness/diameter ratio (P <0.05 vs. control) and slightly reduced relative heart weight were observed in the PB group. These effects were blunted by simultaneous stress exposure. Immunochemistry was used to stain for Bax and Bcl-2 (apoptosis markers). There was a four-fold increase in Bax/Bcl-2 ratio in the heart of PB and PB+Stress treated mice while an attenuation was observed in aortic endothelium. Results suggest that a relatively short-term continuous PB exposure may have adverse effects on the heart and blood vessels, independently of changes in MAP and HR.
Natural glucocorticoid hydrocortisone was suggested as a potent substitution for dexamethasone in the treatment of bronchopulmonary dysplasia in neonates. The aim of this study was to investigate whether hydrocortisone is able to affect the expression of apoptotic genes and the intensity of naturally occurring cell death in the developing rat hippocampus. Hormone treatment decreased procaspase-3 and active caspase-3 levels as well as DNA fragmentation intensity in the hippocampal formation of one-week-old rats in 6 h after injection. These changes were accompanied by an upregulation of antiapoptotic protein Bcl-XL, while expression of proapoptotic protein Bax remained unchanged. The action of hydrocortisone was glucocorticoid receptor-independent, as the selective glucocorticoid receptor agonist dexamethasone did not affect either apoptotic protein levels or DNA fragmentation intensity in the hippocampal region. The data are the first evidences for in vivo antiapoptotic effects of hydrocortisone in the developing hippocampus., P. N. Menshanov, ... [et al.]., and Obsahuje seznam literatury
Mammalian teeth develop during embryogenesis as epithelio-mesenchymal organs. The primary enamel knot is considered as a signaling center in tooth morphogenesis. After tooth bell formation, this epithelial structure undergoes apoptosis. Activation of caspase 3 represents a crucial step in the intracellular death machinery. Procaspase 3 and caspase 3 molecules were localized in the primary enamel knot of the field vole using immunohistochemistry. Different fixation procedures in cryopreserved and paraffin-embedded tissues and detection systems based on peroxidase and alkaline phosphatase mediated color reactions were applied. Apoptosis was detected using morphological criteria and the TUNEL assay. Procaspase 3 was found in both the epithelial and mesenchymal part of the tooth germ. Active caspase 3 was localized particularly in the primary enamel knot, its distribution correlated with dental apoptosis and showed a similar pattern in the field vole as in the mouse.
The aim of our work was to evaluate peripheral blood lymphocyte subsets as
in vitro indicators of the received dose of ionizing radiation (biodosimetric markers) in the range of 3-20 Gy and to determine the appropriate time interval, during which a dose-dependent induction of apoptosis occurs upon γ irradiation. In lymphocyte subsets characterized by double color surface immunophenotyping, four-color flow cytometry was used for visualizing cell death-associated increase in superficial phosphatidylserine exposure and cytoplasmic membrane permeability by fluorinated Annexin V
and propidium iodide, respectively. No differences between sham-treated and lethal dose (7 Gy)-irradiated samples were observed upon 6 h cultivation in vitro. Ten and 18 h later, about 50 % of lymphocytes were apoptotic, but only the minority of them was in the late apoptotic phase. The only difference in radioresistance of the CD4+CD8- and CD4-CD8
+ lymphocyte subsets was seen upon 2-day cultivation when huge depletion of intact cells and prevalence of the late apoptotic population became obvious. A dose-dependence study in 16 and 48 h cultures confirmed the effectiveness of major T cell subsets as biodosimetric indicators. On the other hand, the minor CD8+ subset of natural killer (NK) cells has been identified as a radiosensitive lymphocyte population the disappearance of which correlated with the received dose. We demonstrated that the CD3
-CD8+ NK subset can be used as a lethal/sublethal dose discriminator to 16 h cultivation. In addition, our data indicate that two-day cultivation followed by CD3/CD8 expression analysis in an intact lymphocyte population may provide a clue for low dosage biodosimetry.
The aim of this work was to compare the effect of gamma radiation with sub-low dose-rate 1.8 mGy/min (SLDR), low dose-rate 3.9 mGy/min (LDR) and high dose-rate 0.6 Gy/min (HDR) on human leukemic cell lines with differing p53 status (HL-60, p53 deficient and MOLT-4, p53 wild) and to elucidate the importance of G2/M phase cell cycle arrest during irradiation. Radiosensitivity of HL-60 and MOLT-4 cells was determined by test of clonogenity. Decrease of dose-rate had no effect on radiosensitivity of MOLT-4 cells (D0 for HDR 0.87 Gy, for LDR 0.78 Gy and for SLDR 0.70 Gy). In contrast, a significant increase of radioresistance after LDR irradiation was observed for p53 negative HL-60 cells (D0 for HDR 2.20 Gy and for LDR 3.74 Gy). After an additional decrease of dose-rate (SLDR) D0 value (2.92 Gy) was not significantly different from HDR irradiation. Considering the fact that during HDR the cells are irradiated in all phases of the cell cycle and during LDR mainly in the G2 phase, we have been unable to prove that the G2 phase is the most radiosensitive phase of the cell cycle of HL-60 cells. On the contrary, irradiation of cells in this phase induced damage reparation and increased radioresistance. When the dose-rate was lowered, approximately to 1.8 mGy/min, an opposite effect was detected, i.e. D0 value decreased to 2.9 Gy. We have proved that during SLDR at first (dose up to 2.5 Gy) the cells accumulated in G2 phase, but then they entered mitosis or, if the cell damage was not sufficiently repaired, the cells entered apoptosis. The entry into mitosis has a radiosensibilizing effect.
Heat shock proteins (HSPs) can be induced by various stresses and play an important role in cell cycle progression. HSP70 has been shown to act as an inhibitor of apoptosis. We studied HSP70 expression in bronchial epithelial cells of C57BL/6 mice and homozygous HPS70 knockout mice (hsp70.1–/–) exposed to chronic hypoxic stress. We also investigated changes in cellular proliferation and apoptosis in relation to HSP70. Lungs were removed from mice after a three-week period of exposure to 10 % O2. Immunoblots for HSP70 and immunohistochemical staining for HSP70 and Ki-67 were performed. Apoptosis was assessed using the TUNEL assay. The three-week period of hypoxic stress did not change HSP70 levels in total lung tissue, but a significant reduction in HSP70 expression was observed in bronchiolar epithelial cells. In wild type mice, both HSP70 and Ki-67 expression were significantly reduced in bronchiolar epithelial cells. In homozygous HPS70 knockout mice (hsp70.1–/–), apoptosis of bronchiolar epithelial cells was significantly increased. Our results suggest that HSP70 may exert anti-apoptotic effects in mouse bronchiolar epithelial cells.
Ginsenoside has been reported to have therapeutic effects for some types of cancer, but its effect on ovarian cancer cells has not been evaluated. In this study, we monitored the effects of ginsenoside-Rh2 (Rh2) on the inhibition of cell proliferation and the apoptotic process in the ovarian cancer cell line SKOV3 using an MTT assay and TUNEL assay. We found that Rh2 inhibited cell proliferation and significantly induced apoptosis. We confirmed the apoptotic effects of Rh2 using western blot analysis of apoptosis-related proteins. Specifically, the levels of cleaved poly ADP ribose polymerase (PARP) and cleaved caspase-3
significantly increased in SKOV cells treated with Rh2. Therefore, Rh2 clearly suppressed the growth of SKOV3 cells in vitro, which was associated with induction of the apoptosis pathway. Moreover, the migration assay showed that Rh2 inhibited the invasive ability of SKOV3 cells. Taken together, our results suggest that Rh2 has anticancer effects in SKOV3 cells through inhibition of cell proliferation and induction of apoptosis. Considering the therapeutic potential of Rh2, more studies should be carried out to facilitate the future application of this natural
product as a potential anti-cancer agent.
The aim of the study was to elucidate the effects of induced leukocyte migration into the bovine mammary gland on the manifestations of early and late apoptotic features of neutrophils cultivated in vitro. The Latin square design was used in two experiments, each involving four experimental repetitions in 4 clinically healthy virgin heifers. The neutrophil early apoptotic features were detected by flow cytometric detection (FCM) of phosphatidyl-serine translocation. Late neutrophil apoptotic features were detected by ELISA quantitation of histone-complexed DNA fragments. Leukocyte influx induction was accomplished by using four inducers:
i) sterile buffered saline solution (PBS); ii) 5 % glucose solution (GLU); iii) synthetic muramyl dipeptide analogue (MDP); and iv) lipopolysaccharide (LPS), administered into the mammary gland lumen. Leukocytes from mammary glands were obtained by mammary gland lumen lavages after
influx induction. The total cell counts in lavages increased after treatment by all inducers in comparison to the counts before influx induction (P<0.001). Cell counts were higher and differed significantly by MDP and LPS (P<0.01) in contrast to PBS. The highest proportion of neutrophils was induced by LPS (P<0.01). After three-hour incubation, light
microscopy examination revealed the highest manifestation of neutrophil apoptosis after induction by GLU (P<0.05). The lowest apoptosis manifestation, though statistically non-significant, was detected after induction by MDP and LPS. Determination of early manifestation of neutrophil apoptosis revealed the lowest manifestation of neutrophil apoptosis
after induction by LPS (P<0.01). The results of late manifestation of neutrophil apoptosis revealed the highest proportion of apoptotic neutrophils after induction by GLU (P<0.05). The manifestation of secondary necrosis of apoptotic neutrophils or neutrophil lysis after 3 h of incubation was low and not significant. In conclusion, certain
inducers of neutrophil migration into the lumen of bovine mammary glands (GLU and LPS in the present experiments) significantly influence the manifestation of neutrophil apoptosis during their subsequent in vitro incubation.
Severe xerostomia is a common late radiation consequence, which occurs after irradiation of head and neck malignancies. The aim of the present study was to analyze apoptosis and proliferation and their relationship during the late post-irradiation phase. C57BL/6 mice were locally irradiated in head and neck region with a single dose of 7.5 or 15 Gy and their submandibular glands were collected at 40 and 90 days after irradiation. To identify apoptotic cells, the TUNEL method was employed and immunohistochemistry with proliferating cell nuclear antigen (PCNA) was used for detecting proliferation. Histological changes at day 40 were mild in contrast to day 90 when glands of irradiated mice showed severe atrophy, vacuolization and mononuclear infiltration. Acinar cells, granular and intercalated duct cells of mice irradiated with 7.5 and 15 Gy expressed higher apoptotic index than cells of non-irradiated, control glands at both
examined time points. At 40 days, a higher proliferation index in granular and intercalated duct cells was detected only in group irradiated with 7.5 Gy. At 90 days, proliferation index for all cell types in both irradiated groups was similar to the controls. According to our results, the imbalance between apoptosis and proliferation caused by X-irradiation may be the reason for gland impairment during the late post-irradiation phase.
Over activation of the endothelin-1 (ET-1) system in disease states contributes to endothelial dysfunction. On the other hand, ET-1 promotes proliferation and survival of endothelial cells. Regulation of programmed cell death (PCD) pathways is critical for cell survival. Recently discovered necroptosis (regulated necrosis) is a pathological PCD mechanism mediated by the activation of toll like receptor 4 (TLR4), which also happens to stimulate ET-1 production in dendritic cells. To establish the effect of ET-1 on PCD and survival of human brain microvascular endothelial cells (BMVECs) under control and inflammatory conditions, BMVECs were treated with ET-1 (10 nM, 100 nM and 1 μM) or lipopolysaccharide (LPS, 100 ng/ml). ET receptors were blocked with bosentan (10 μM). Under normal growth conditions, exogenous ET-1 reduced BMVEC viability and migration at a relatively high concentration (1 μM). This was accompanied with activation of necroptosis and apoptosis marker genes. LPS decreased endogenous ET-1 secretion, increased ETB receptor expression and activated necroptosis. Even though ET-1 levels were low (less than 10 nM levels used under normal growth conditions), blocking of ET receptors with bosentan inhibited the necroptosis pathway and improved the cell migration ability of BMVECs, suggesting that under inflammatory conditions, ET-1 activates PCD pathways in BMVECs even at physiological levels., Y. Abdul, R. Ward, G. Dong, A. Ergul., and Seznam literatury