The aim of the study was to elucidate the effects of induced leukocyte migration into the bovine mammary gland on the manifestations of early and late apoptotic features of neutrophils cultivated in vitro. The Latin square design was used in two experiments, each involving four experimental repetitions in 4 clinically healthy virgin heifers. The neutrophil early apoptotic features were detected by flow cytometric detection (FCM) of phosphatidyl-serine translocation. Late neutrophil apoptotic features were detected by ELISA quantitation of histone-complexed DNA fragments. Leukocyte influx induction was accomplished by using four inducers:
i) sterile buffered saline solution (PBS); ii) 5 % glucose solution (GLU); iii) synthetic muramyl dipeptide analogue (MDP); and iv) lipopolysaccharide (LPS), administered into the mammary gland lumen. Leukocytes from mammary glands were obtained by mammary gland lumen lavages after
influx induction. The total cell counts in lavages increased after treatment by all inducers in comparison to the counts before influx induction (P<0.001). Cell counts were higher and differed significantly by MDP and LPS (P<0.01) in contrast to PBS. The highest proportion of neutrophils was induced by LPS (P<0.01). After three-hour incubation, light
microscopy examination revealed the highest manifestation of neutrophil apoptosis after induction by GLU (P<0.05). The lowest apoptosis manifestation, though statistically non-significant, was detected after induction by MDP and LPS. Determination of early manifestation of neutrophil apoptosis revealed the lowest manifestation of neutrophil apoptosis
after induction by LPS (P<0.01). The results of late manifestation of neutrophil apoptosis revealed the highest proportion of apoptotic neutrophils after induction by GLU (P<0.05). The manifestation of secondary necrosis of apoptotic neutrophils or neutrophil lysis after 3 h of incubation was low and not significant. In conclusion, certain
inducers of neutrophil migration into the lumen of bovine mammary glands (GLU and LPS in the present experiments) significantly influence the manifestation of neutrophil apoptosis during their subsequent in vitro incubation.