Ginsenoside has been reported to have therapeutic effects for some types of cancer, but its effect on ovarian cancer cells has not been evaluated. In this study, we monitored the effects of ginsenoside-Rh2 (Rh2) on the inhibition of cell proliferation and the apoptotic process in the ovarian cancer cell line SKOV3 using an MTT assay and TUNEL assay. We found that Rh2 inhibited cell proliferation and significantly induced apoptosis. We confirmed the apoptotic effects of Rh2 using western blot analysis of apoptosis-related proteins. Specifically, the levels of cleaved poly ADP ribose polymerase (PARP) and cleaved caspase-3
significantly increased in SKOV cells treated with Rh2. Therefore, Rh2 clearly suppressed the growth of SKOV3 cells in vitro, which was associated with induction of the apoptosis pathway. Moreover, the migration assay showed that Rh2 inhibited the invasive ability of SKOV3 cells. Taken together, our results suggest that Rh2 has anticancer effects in SKOV3 cells through inhibition of cell proliferation and induction of apoptosis. Considering the therapeutic potential of Rh2, more studies should be carried out to facilitate the future application of this natural
product as a potential anti-cancer agent.
The Forkhead box O (FoxO) transcription factors, including FoxO1, FoxO3a, and FoxO4, have been implicated in the regulation of several biological processes, including stress resistance, metabolism, and apoptosis. In the present study, FoxO1 and FoxO3a patterns and their role in the regulation of the insulin signalling and mitogen-activated protein kinase (MAPK) pathways were analyzed after starvation in the fat body cells of the silkworm, Bombyx mori. FoxO1 and FoxO3a are localized to the nuclei. It was found that the levels of the insulin receptor and phosphoryated kinase Akt (p-Akt) increased when the animals ceased feeding. Starvation conditions caused a decrease in extracellular-signal-regulated kinase (ERK) phosphorylation, and an increase in c-Jun N-terminal kinase (JNK) and p38 (MAP kinase) phosphorylation. This implies that the FoxO transcription factors are activated by starvation and that starvation leads to changes in the insulin signalling and MAPK pathways in B. mori. These results strongly suggest that the FoxO transcription factor may be involved in the regulation of the insulin signalling and MAPK pathways in B. mori. As such, the findings provide molecular entomologists with valuable information on the molecular mechanism of the signalling pathways in postembryonic development ofthe silkworm., Jin Hee Kim ... [et al.]., and Obsahuje seznam literatury