Drought stress is one of the main environmental factors limiting plant growth and productivity of many crops. Elevated carbon dioxide concentration (eCO2) can ameliorate, mitigate, or compensate for the negative impact of drought on plant growth and enable plants to remain turgid and functional for a longer period. In order to investigate the combined effects of eCO2 and drought stress on photosynthetic performance and leaf structures, we analyzed photosynthetic characteristics and structure and ultrastructure of cucumber leaves. The decline in net photosynthetic rate under moderate drought stress occurred due to stomatal limitation alone, while under severe drought stress, it was the result of stomatal and nonstomatal limitations. Conversely, eCO2 improved photosynthetic performance under moderate drought stress, increased the lengths of the palisade cells and the number of chloroplasts per palisade cell under severe drought stress, and significantly increased the grana thickness under moderate drought stress. Additionally, eCO2 significantly decreased stomatal density, stomatal widths and stomatal aperture on the abaxial surface of leaves under moderate drought stress. In conclusion, eCO2 can alleviate the negative effects of drought stress by improving the drought resistance of cucumber seedlings through stomatal modifications and leaf structure., B. B. Liu, M. Li, Q. M. Li, Q. Q. Cui, W. D. Zhang, X. Z. Ai, H. G. Bi., and Obsahuje bibliografii
The effects of soil flooding on gas exchange and photosystem 2 (PS2) activity were analyzed in leaves of Phragmites australis, Carex cinerascens, and Hemarthria altissima. Pronounced decrease in net photosynthetic rate and stomatal conductance with flooding was found only in C. cinerascens. No significant changes in PS2 activity were observed in all three species which suggests that the photosynthetic apparatus was not damaged. Among the three species, H. altissima is better adapted to flooding than P. australis and C. cinerascens. and M. Li, D. Yang, W. Li.
Gas exchange of Carex cinerascens was carried out in Swan Islet Wetland Reserve (29°48' N, 112°33' E). The diurnal photosynthetic course of C. cinerascens in the flooded and the nonflooded conditions were analyzed through the radial basis function (RBF) neural network approach to evaluate the influences of environmental variables on the photosynthetic activity. The inhibition of photosynthesis induced by soil flooding can be attributed to the reduced stomatal conductance (gs), the deficiency of Rubisco regeneration and decreased chlorophyll (Chl) content. As revealed by analysis of artificial neural network (ANN) models, gs was the dominant factor in determining the photosynthesis response. Weighting analysis showed that the effect of water pressure deficit (VPD) > air temperature (T) > CO2 concentration (Ca) > air humidity (RH) > photosynthetical photon flux density (PPFD) for the nonflooded model, whereas for the flooded model, the factors were ranked in the order VPD > C a > RH > PPFD > T. The different photosynthetic response of C. cinerascens found between the nonflooded and flooded conditions would be useful to evaluate the flood tolerance at plant species level. and M. Li ... [et al,.].
Over-expression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) increased unsaturated fatty acid contents in phosphatidylglycerol (PG) of thylakoid membrane in tomato. The effect of this increase on the xanthophyll cycle and chloroplast antioxidant enzymes was examined by comparing wild type (WT) tomato with the transgenic (TG) lines at chilling temperature (4 °C) under low irradiance (100 µmol m-2 s-1). Net photosynthetic rate and the maximal photochemical efficiency of photosystem (PS) 2 (Fv/Fm) in TG plants decreased more slowly during chilling stress and Fv/Fm recovered faster than that in WT plants under optimal conditions. The oxidizable P700 in both WT and TG plants decreased during chilling stress under low irradiance, but recovered faster in TG plants than in the WT ones. During chilling stress, non-photochemical quenching (NPQ) and the de-epoxidized ratio of xanthophyll cycle in WT plants were lower than those of TG tomatoes. The higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in TG plants resulted in the reduction of O2-. and H2O2 contents during chilling stress. Hence the increase in content of unsaturated fatty acids in PG by the over-expression of LeGPAT could alleviate photoinhibition of PS2 and PS1 by improving the de-epoxidized ratio of xanthophyll cycle and activities of SOD and APX in chloroplast. and N. Sui ... [et al.].
Ascorbate is an important antioxidant involved in both enzymatic and nonenzymatic reactions in plant cells. To reveal the function of ascorbate associated with defense against photo-oxidative damage, responses of the ascorbate-deficient mutant vtc2-1 of Arabidopsis thaliana to high-light stress were investigated. After high-light treatment at 1,600 μmol(photon) m-2 s-1 for 8 h, the vtc2-1 mutant exhibited visible photo-oxidative damage. The total ascorbate content was lower, whereas accumulation of H2O2 was higher in the vtc2-1 mutant than that in the wild type. The chlorophyll (Chl) content and PSII Chl fluorescence parameters, such as maximal quantum yield of PSII photochemistry, yield, and electron transport rate, in vtc2-1 mutant decreased more than that in the wild type, whereas the nonphotochemical quenching coefficient increased more in the wild type than that in vtc2-1 mutant. Therefore, the vtc2-1 mutant was more sensitive to high-light stress than the wild type. Accumulation of reactive oxygen species was mainly responsible for the damage of PSII in the vtc2-1 mutant under high light. The results indicate that ascorbate plays a critical role in maintaining normal photosynthetic function in plants under high-light stress., L.-D. Zeng, M. Li, W. S. Chow, C.-L. Peng., and Obsahuje bibliografické odkazy