In numerical models of fluid flow with particles moving close to solid boundaries, the Basset force is usually calculated for the particle motion between particle-boundary collisions. The present study shows that the history force must also be taken into account regarding particle collisions with boundaries or with other particles. For saltation - the main mode of bed load transport - it is shown using calculations that two parts of the history force due to both particle motion in the fluid and to particle-bed collisions are comparable and substantially compensate one another. The calculations and comparison of the Basset force with other forces acting on a sand particle saltating in water flow are carried out for the different values of the transport stage. The conditions under which the Basset force can be neglected in numerical models of saltation are studied. and V numerických modelech proudění tekutin s pevnými částicemi v blízkosti pevné stěny je Bassetova historická síla obvykle počítána pro pohyb částice mezi jejími jednotlivými kolisemi se dnem. Předložená studie ukazuje, že při výpočtu Bassetovy historické síly je nutné brát v úvahu kolisi částice s pevným dnem nebo s jinými částicemi. Pro saltaci, hlavní typ pohybu splavenin u dna koryta, je na základě použitých výpočtů ukázáno, že dvě části Bassetovy historické síly, tj. síly způsobené pohybem částice v tekutině a kolisí částice se dnem, jsou srovnatelné a mohou se vzájemně významně kompensovat. Výpočet Bassetovy historické síly a její srovnání s ostatními silami působícími na písčitou částici při jejím saltačním pohybu ve vodě je uskutečněn pro různé hodnoty tzv. transport stage (poměr aktuálního a kritického smykového napětí na dně). Zároveň byly studovány podmínky, za nichž může být Bassetova historická síla v numerických modelech zanedbána.
A three-dimensional numerical simulation of particle motion in a pipe with a rough bed is presented. The simulation based on the Lattice Boltzmann Method (LBM) employs the hybrid diffuse bounce-back approach to model moving boundaries. The bed of the pipe is formed by stationary spherical particles of the same size as the moving particles. Particle movements are induced by gravitational and hydrodynamic forces. To evaluate the hydrodynamic forces, the Momentum Exchange Algorithm is used. The LBM unified computational frame makes it possible to simulate both the particle motion and the fluid flow and to study mutual interactions of the carrier liquid flow and particles and the particle–bed and particle–particle collisions. The trajectories of simulated and experimental particles are compared. The
Particle Tracking method is used to track particle motion. The correctness of the applied approach is assessed.