The flow behaviour of coarse-grained slurry depends on particle size, shape, density and concentration, and on the density and rheological properties of the carrier liquid. The present paper describes the results of an experimental investigation and flow visualisation of model coarse-grained particle-water mixtures in a closed pipe loop with smooth stainless steel pipes of inner diameter 36 mm. Glass balls and washed graded pebble gravel of mean diameter d50 = 6 mm were used as model coarse-grained material. The effect of slurry velocity and particle concentration on the slurry flow behaviour and pressure drop in the turbulent regime was evaluated. Particle distribution in the pipe cross-section and motion of particles along the pipe invert, particle saltation and particle conveying in the carrier liquid were investigated in a transparent pipe viewing section and motion of individual particles was described. Velocity profiles of the carrier liquid and conveyed particles were determined. and Tokové chování hrubozrnných suspenzí závisí na velikosti, tvaru a hustotě částic, koncentraci pevné fáze a hustotě a reologických vlastnostech nosné kapaliny. Článek popisuje výsledky experimentálního výzkumu a vizualizace proudění modelové hrubozrnné suspenze v experimentální potrubní lince s hladkým nerezovým potrubím s vnitřním průměrem 36 mm. Skleněné kuličky a praný oblý štěrk (kačírek) se středním zrnem d50 = 6 mm byly použity jako modelový materiál. Byl vyhodnocen vliv rychlosti proudění suspenze a koncentrace pevné fáze na chování a tlakové ztráty suspenze. Rozdělení částic v příčném průřezu potrubí a pohyb částic podél dna potrubí, jejich saltace a unášení v nosné kapalině byly zkoumány v transparentní části potrubí a byl popsán pohyb jednotlivých částic a pro vybrané případy byly stanoveny rychlostní profily nosné kapaliny a unášených částic.
A three-dimensional numerical simulation of particle motion in a pipe with a rough bed is presented. The simulation based on the Lattice Boltzmann Method (LBM) employs the hybrid diffuse bounce-back approach to model moving boundaries. The bed of the pipe is formed by stationary spherical particles of the same size as the moving particles. Particle movements are induced by gravitational and hydrodynamic forces. To evaluate the hydrodynamic forces, the Momentum Exchange Algorithm is used. The LBM unified computational frame makes it possible to simulate both the particle motion and the fluid flow and to study mutual interactions of the carrier liquid flow and particles and the particle–bed and particle–particle collisions. The trajectories of simulated and experimental particles are compared. The
Particle Tracking method is used to track particle motion. The correctness of the applied approach is assessed.
The paper deals with an experimental investigation of impacts of non-rotating spherical bodies on a flat, solid surface in water. The aim of the investigation was, using the PIV (Particle Image Velocimetry), method to analyze the velocity fields around the falling sphere which falls in an oblique direction. The experiments showed that the wake that forms behind the sphere is asymmetrical and that after the impact it continues its morion to the bottom, only along one side of the sphere, though. This non-symmetrical velocity field results in additional forces which push the sphere to the opposite direction than is the direction of the sphere motion just after the impact. and Obsahuje seznam literatury