vydává a řídí Josef V. Rozmara, Obsahuje rejstřík, Oddíl I. Botanika / Naps. Josef Černý -- Oddíl II. Zoologie / Naps. Josef V. Rozmara -- Oddíl III. Nauka o půdě / Naps. Josef Černý, and Converted from MODS 3.5 to DC version 1.8 (EE patch 2015/06/25)
Because nutrients accrued during larval stages represent the major limiting factor for egg production, the use of adult feeding to enhance the reproductive output in moths is considered to be largely weight-dependent. It is hypothesized, however, that feeding by adults could be adaptive and an effective means of increasing their reproductive success. In order to test this, the calling behaviour of Spodoptera littoralis females that differed in body weight and whether they had fed or not were recorded. Two experiments were carried out. In the first, the calling behaviour of food-deprived females of different body weights was recorded. A strong positive correlation was found between body weight at emergence and the total duration of calling of females on the second to the fifth night after emergence. In the second experiment, groups of female moths that varied in body weight were given access to water or sucrose. Feeding on sucrose significantly reduced the pre-calling period and increased the total time spent calling on the six nights after emergence. The increase in time spent calling associated with ingesting sucrose were proportionately similar for both small and large females, implying that feeding by adults can result in an increase in the time spent calling by moths irrespective of larval nutritional status. Female longevity was also correlated with moth weight at emergence and/or sucrose availability. It is concluded that it is advantageous for female S. littoralis to be large and/or have access to sucrose-rich food in the adult stage as they can spend more time attracting a mate, which increases their chances of mating in early adult life, and their longer adult life may indirectly result in an increase in fecundity., Medhat M. Sadek., and Obsahuje seznam literatury
The oriental fruit fly, Bactrocera dorsalis, is a key economic insect pest reducing fruit yield and generating constraints in the international market. The application of the sterile insect technique (SIT) continues to reveal areas where new technologies can improve the effectiveness of fruit fly control. One such advancement concerns insect strains. In the present study, a mass-reared strain of the fly with a translocation-based genetic sexing character (Salaya1) based on a brown-white pupal colour dimorphism was genetically characterized using 11 microsatellite DNA markers. Subsequently, these markers were used to evaluate the maintenance of genetic variability in the strain under mass-rearing conditions. Mating competitiveness of this strain was also tested in field cages. Two of the newly characterized Y-pseudo-linked microsatellite markers were used for strain identification in field monitoring traps. The strain was also validated in a pilot integrated pest management (IPM) programme using male-only SIT in a fruit orchard. The programme resulted in the suppression of the fruit fly population., Siriwan Isasawin, Nidchaya Aketarawong, Sujinda Thanaphum., and Obsahuje seznam literatury
The Niobe Fritillary, Argynnis niobe, is a habitat specialist and as a consequence is highly endangered in contemporary Europe. To investigate its genetic diversity and population structure, 10 polymorphic microsatellite loci were developed and characterized, using a recently developed pyrosequencing method. The number of alleles per locus ranged from 2 to 21, and the observed and expected heterozygosities varied from 0.17 to 0.53 and from 0.24 to 0.92, respectively. These loci were also successfully used to study the genetic diversity of a closely related species, the High Brown Fritillary, Argynnis adippe, and will be used in future population structure studies of both these species., Jan Zima JR, Dan Leština, Martin Konvička., and Obsahuje seznam literatury
Survival and Lt50 after exposures at constant low temperature were compared to the values obtained at alternating temperatures in two active (summer acclimated) temperate terrestrial arthropods. The experimental regimes used interruptions - daily transfers from the lower temperature to various higher temperatures for two hours or to one high temperature for Various durations. In both species the alternating conditions improved survival, implying reparation of the chill injury. In the collembolan Orchesella cincta, there was a maximum Lt50 when the higher exposure temperature was equal to the temperature of rearing (19°C). In the bug Pyrrhocoris apterus, Lt50 increased strongly with increasing higher temperature from 0 to 15°C, and was subsequently constant over the entire physiological range suitable for development (to 35°C). Exposure at 0°C was harmful if continuously applied, but survival increased, relative to a constant exposure at -5°C, if the temperature alternated between -5 and 0°C., Zdeněk Hanč, Oldřich Nedvěd, and Lit